Optimization Toolbox

 For Use with MATLAB ${ }^{\circledR}$Computation

Visualization

Programming

How to Contact The MathWorks

www.mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_Ts.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
Bug reports
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Optimization Toolbox User's Guide
© COPYRIGHT 1990-2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www. mathworks.com/patents for more information.

Revision History

November 1990 First printing
December 1996 Second printing January 1999 Third printing September 2000 Fourth printing June 2001
September 2003 June 2004
October 2004
March 2005
September 2005
March 2006
September 2006 Sixth printing

For MATLAB 5
For Version 2 (Release 11)
For Version 2.1 (Release 12)
Revised for Version 2.1.1 (Release 12.1)
Revised for Version 2.3 (Release 13SP1)
Revised for Version 3.0 (Release 14)
Revised for Version 3.0.1 (Release 14SP1)
Revised for Version 3.0.2 (Release 14SP2)
Revised for Version 3.0.3 (Release 14SP3)
Revised for Version 3.0.4 (Release 2006a)
Revised for Version 3.1 (Release 2006b)

Acknowledgments

The MathWorks would like to acknowledge the following contributors to the Optimization Toolbox.

Thomas F. Coleman researched and contributed the large-scale algorithms for constrained and unconstrained minimization, nonlinear least squares and curve fitting, constrained linear least squares, quadratic programming, and nonlinear equations.

Dr. Coleman is Professor of Computer Science and Applied Mathematics at Cornell University. He is Director of the Cornell Theory Center and the Cornell Computational Finance Institute. Dr. Coleman is Chair of the SIAM Activity Group on Optimization, and a member of the Editorial Boards of Applied Mathematics Letters, SIAM Journal of Scientific Computing, Computational Optimization and Applications, Communications on Applied Nonlinear Analysis, and Mathematical Modeling and Scientific Computing.

Dr. Coleman has published 4 books and over 70 technical papers in the areas of continuous optimization and computational methods and tools for large-scale problems.

Yin Zhang researched and contributed the large-scale linear programming algorithm.

Dr. Zhang is Associate Professor of Computational and Applied Mathematics on the faculty of the Keck Center for Computational Biology at Rice University. He is on the Editorial Board of SIAM Journal on Optimization, and is Associate Editor of Journal of Optimization: Theory and Applications.

Dr. Zhang has published over 40 technical papers in the areas of interior-point methods for linear programming and computation mathematical programming.

Acknowledgments

Getting Started

1

What Is the Optimization Toolbox? 1-2
Optimization Functions 1-2
Optimization Toolbox GUI 1-2
Optimization Example 1-3
The Problem 1-3
Setting Up the Problem 1-3
Finding the Solution 1-4
More Examples 1-5
Tutorial
2
Introduction 2-3
Problems Covered by the Toolbox 2-3
Using the Optimization Functions 2-6
Medium- and Large-Scale Algorithms 2-7
Examples That Use Standard Algorithms 2-9
Unconstrained Minimization Example 2-10
Nonlinear Inequality Constrained Example 2-12
Constrained Example with Bounds 2-13
Constrained Example with Gradients 2-15
Gradient Check: Analytic Versus Numeric 2-17
Equality Constrained Example 2-18
Maximization 2-19
Greater-Than-Zero Constraints 2-19
Avoiding Global Variables via Anonymous and Nested Functions 2-20
Nonlinear Equations with Analytic Jacobian 2-22
Nonlinear Equations with Finite-Difference Jacobian 2-25
Multiobjective Examples 2-26
Large-Scale Examples 2-40
Problems Covered by Large-Scale Methods 2-41
Nonlinear Equations with Jacobian 2-44
Nonlinear Equations with Jacobian Sparsity Pattern 2-47
Nonlinear Least-Squares with Full Jacobian Sparsity Pattern 2-49
Nonlinear Minimization with Gradient and Hessian 2-51
Nonlinear Minimization with Gradient and Hessian Sparsity Pattern 2-53
Nonlinear Minimization with Bound Constraints and Banded Preconditioner 2-55
Nonlinear Minimization with Equality Constraints 2-58
Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints 2-60
Quadratic Minimization with Bound Constraints 2-64
Quadratic Minimization with a Dense but Structured Hessian 2-66
Linear Least-Squares with Bound Constraints 2-72
Linear Programming with Equalities and Inequalities 2-73
Linear Programming with Dense Columns in the Equalities 2-75
Default Options Settings 2-78
Changing the Default Settings 2-78
Displaying Iterative Output 2-81
Most Common Output Headings 2-81
Function-Specific Output Headings 2-82
Calling an Output Function Iteratively 2-88
What the Example Does 2-88
Output Function 2-89
Creating the M-File for the Example 2-90
Running the Example 2-92
Optimizing Anonymous Functions Instead of M-Files 2-95
Other Examples That Use this Technique 2-96
Typical Problems and How to Deal with Them 2-98
Selected Bibliography 2-102
Standard Algorithms
3
Optimization Overview 3-4
Demos of Medium-Scale Methods 3-5
Unconstrained Optimization 3-6
Quasi-Newton Methods 3-8
Line Search 3-10
Quasi-Newton Implementation 3-11
Hessian Update 3-11
Line Search Procedures 3-11
Least-Squares Optimization 3-18
Gauss-Newton Method 3-20
Levenberg-Marquardt Method 3-21
Nonlinear Least-Squares Implementation 3-22
Nonlinear Systems of Equations 3-25
Gauss-Newton Method 3-25
Trust-Region Dogleg Method 3-25
Nonlinear Equations Implementation 3-27
Constrained Optimization 3-29
Sequential Quadratic Programming (SQP) 3-30
Quadratic Programming (QP) Subproblem 3-31
SQP Implementation 3-32
Simplex Algorithm 3-39
Multiobjective Optimization 3-43
Introduction 3-43
Goal Attainment Method 3-49
Algorithm Improvements for the Goal Attainment Method 3-50
Selected Bibliography 3-53
Large-Scale Algorithms
4
Trust-Region Methods for Nonlinear Minimization 4-3
Demos of Large-Scale Methods 4-6
Preconditioned Conjugate Gradients 4-7
Algorithm 4-7
Linearly Constrained Problems 4-9
Linear Equality Constraints 4-9
Box Constraints 4-10
Nonlinear Least-Squares 4-12
Quadratic Programming 4-13
Linear Least-Squares 4-14
Large-Scale Linear Programming 4-15
Main Algorithm 4-15
Preprocessing 4-18
Selected Bibliography 4-20

5

Getting Started with the Optimization Tool 5-2
Opening the Optimization Tool 5-2
Steps for Using the Optimization Tool 5-4
Selecting a Solver 5-5
Defining the Problem 5-7
bintprog Problem Setup 5-8
fgoalattain Problem Setup 5-9
fminbnd Problem Setup 5-10
fmincon Problem Setup 5-11
fminimax Problem Setup 5-13
fminsearch Problem Setup 5-14
fminunc Problem Setup 5-15
fseminf Problem Setup 5-16
fsolve Problem Setup 5-17
fzero Problem Setup 5-18
linprog Problem Setup 5-19
lsqcurvefit Problem Setup 5-21
lsqlin Problem Setup 5-22
lsqnonlin Problem Setup 5-23
lsqnonneg Problem Setup 5-24
quadprog Problem Setup 5-25
Running a Problem in the Optimization Tool 5-27
Pausing and Stopping the Algorithm 5-27
Viewing Results 5-28
Final Point 5-28
Specifying the Options 5-29
Stopping Criteria 5-29
Function Value Check 5-31
User-Supplied Derivatives 5-31
Approximated Derivatives 5-32
Algorithm Settings 5-33
Multiobjective Problem Settings 5-36
Inner Iteration Stopping Criteria 5-36
Plot Functions 5-38
Output function 5-39
Display to Command Window 5-39
Getting Help in the Optimization Tool 5-41
Quick Reference 5-41
Additional Help 5-41
Importing and Exporting Your Work 5-42
Starting a New Problem 5-42
Exporting to the MATLAB Workspace 5-43
Generating an M-File 5-44
Closing the Optimization Tool 5-45
Importing Your Work 5-45
Optimization Tool Example Using the Isqlin Solver 5-46
The Problem 5-46
Setting Up the Problem 5-46
Argument and Options Reference
6
Function Arguments 6-2
Optimization Options 6-8
Output Function 6-16
Plot Functions 6-25
Functions - By Category
7
Minimization 7-2
Equation Solving 7-2
Least Squares (Curve Fitting) 7-3
Graphical User Interface 7-3
Utility 7-3
Functions - Alphabetical List
8
Index

Getting Started

What Is the Optimization Toolbox? (p. 1-2)

Optimization Example (p. 1-3)

Introduces the toolbox and describes the types of problems it is designed to solve.

Presents an example that illustrates how to use the toolbox.

What Is the Optimization Toolbox?

The Optimization Toolbox extends the capability of the MATLAB ${ }^{\circledR}$ numeric computing environment. The toolbox includes routines for many types of optimization including

- Unconstrained nonlinear minimization
- Constrained nonlinear minimization, including goal attainment problems, minimax problems, and semi-infinite minimization problems
- Quadratic and linear programming
- Nonlinear least-squares and curve fitting
- Nonlinear system of equation solving
- Constrained linear least squares
- Sparse and structured large-scale problems

Optimization Functions

All the toolbox functions are MATLAB M-files, made up of MATLAB statements that implement specialized optimization algorithms. You can view the MATLAB code for these functions using the statement

```
type function_name
```

You can extend the capabilities of the Optimization Toolbox by writing your own M-files, or by using the toolbox in combination with other toolboxes, or with MATLAB or Simulink ${ }^{\circledR}$.

Optimization Toolbox GUI

The Optimization Tool (optimtool) is a GUI for selecting a solver, specifying the optimization options, and running problems. You can define and modify problems quickly with the GUI. You can also import and export from the MATLAB workspace and generate M-files containing your configuration for the solver and options.

Optimization Example

This section presents an example that illustrates how to solve an optimization problem using the toolbox function lsqlin, which solves linear least squares problems. This section covers the following topics:

- "The Problem" on page 1-3
- "Setting Up the Problem" on page 1-3
- "Finding the Solution" on page 1-4
- "More Examples" on page 1-5

The Problem

The problem in this example is to find the point on the plane $x_{1}+2 x_{2}+4 x_{3}=7$ that is closest to the origin. The easiest way to solve this problem is to minimize the square of the distance from a point $x=\left(x_{1}, x_{2}, x_{3}\right)$ on the plane to the origin, which returns the same optimal point as minimizing the actual distance. Since the square of the distance from an arbitrary point (x_{1}, x_{2}, x_{3}) to the origin is $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, you can describe the problem as follows:

$$
\underset{x}{\operatorname{minimize}} f(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
$$

subject to the constraint

$$
x_{1}+2 x_{2}+4 x_{3}=7
$$

The function $f(x)$ is called the objective function and $x_{1}+2 x_{2}+4 x_{3}=7$ is an equality constraint. More complicated problems might contain other equality constraints, inequality constraints, and upper or lower bound constraints.

Setting Up the Problem

This section shows how to set up the problem before applying the function lsqlin, which solves linear least squares problems of the following form:

$$
\underset{x}{\operatorname{minimize}} f(x)=\|C x-d\|^{2}
$$

where $\|C x-d\|^{2}$ is the norm of $C x-d$ squared, subject to the constraints

$$
\begin{aligned}
& A x \leq b \\
& A e q \cdot x=b e q
\end{aligned}
$$

To set up the problem, you must create variables for the parameters C, d, A, $b, A e q$, and beq. lsqlin accepts these variables as input arguments with the following syntax:

```
x = lsqlin(C, d, A, b, Aeq, beq)
```

To create the variables, do the following steps:

Create Variables for the Objective Function

1 Since you want to minimize $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\|x\|^{2}$, you can set C to be the 3 -by- 3 identity matrix and d to be a 3 -by- 1 vector of zeros, so that $C x-d=x$.

C = eye(3);
d $=$ zeros(3,1);

Create Variables for the Constraints

2 Since this example has no inequality constraints, you can set A and b to be empty matrices in the input arguments.

You can represent the equality constraint $x_{1}+2 x_{2}+4 x_{3}=7$ in matrix form as

$$
A e q \cdot x=b e q
$$

where $A e q=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]$ and $b e q=[7]$. To create variables for Aeq and beq, enter

```
Aeq = [1 2 4];
beq = [7];
```


Finding the Solution

To solve the optimization problem, enter

```
    [x, fval] =lsqlin(C, d, [], [], Aeq, beq)
lsqlin returns
x =
    0.3333
    0.6667
    1.3333
fval =
    2.3333
```

The minimum occurs at the point x and fval is the square of the distance from x to the origin.

Note In this example, lsqlin issues a warning that it is switching from its default large-scale algorithm to its medium-scale algorithm. This message has no bearing on the result, so you can safely ignore it. "Using the Optimization Functions" on page 2-6 provides more information on large- and medium-scale algorithms.

More Examples

The following sections contain more examples of solving optimization problems:

- "Examples That Use Standard Algorithms" on page 2-9
- "Large-Scale Examples" on page 2-40
- Optimization Tool Example contains the example shown above for lsqlin using the Optimization Tool.

Tutorial

The Tutorial provides information on how to use the toolbox functions. It also provides examples for solving different optimization problems.

It consists of these sections.

Introduction (p. 2-3)	Summarizes, in tabular form, functions available for minimization, equation solving, and solving
least-squares or data fitting	
problems. It also provides basic	
guidelines for using optimization	
routines and introduces algorithms	
and line-search strategies available	

$\left.\begin{array}{ll}\text { Large-Scale Examples (p. 2-40) } & \begin{array}{l}\text { Presents large-scale algorithms } \\ \text { through a selection of large-scale } \\ \text { examples. These examples include } \\ \text { specifying sparsity structures, } \\ \text { and preconditioners, as well as }\end{array} \\ \text { unconstrained and constrained } \\ \text { problems. }\end{array}\right\}$

Introduction

Optimization is the process of finding the minimum or maximum of a function, usually called the objective function. The Optimization Toolbox consists of functions that perform minimization (or maximization) on general nonlinear functions. The toolbox also provides functions for nonlinear equation solving and least-squares (data-fitting) problems.

This introduction includes the following sections:

- "Problems Covered by the Toolbox" on page 2-3
- "Using the Optimization Functions" on page 2-6
- "Medium- and Large-Scale Algorithms" on page 2-7

Problems Covered by the Toolbox

The following tables show the functions available for minimization, equation solving, binary integer programming problems, and solving least-squares or data-fitting problems.

Minimization

Type	Notation	Function
Scalar minimization	$\min _{x} f(x)$ such that $x_{1}<x<x_{2}$	fminbnd
Unconstrained minimization	$\min _{x} f(x)$	fminunc, fminsearch
Linear programming	$\begin{aligned} & \min _{x} f^{T} x \text { such that } \\ & A \cdot x \leq b, \text { Aeq } x=b e q, \quad l \leq x \leq u \end{aligned}$	linprog
Quadratic programming	$\begin{aligned} & \min \frac{1}{2} x^{T} H x+f^{T} x \text { such that } \\ & x \\ & A \cdot x \leq b, \text { Aeq } \cdot x=\text { beq, } \quad l \leq x \leq u \end{aligned}$	quadprog

Minimization (Continued)

Type	Notation	Function
Constrained minimization	$\begin{aligned} & \min _{x} f(x) \text { such that } \\ & c(x) \leq 0, \operatorname{ceq}(x)=0 \\ & A \cdot x \leq b, \text { Aeq } x=\text { beq, } l \leq x \leq u \end{aligned}$	fmincon
Goal attainment	$\begin{gathered} F(x)-w \gamma \leq \text { goal } \\ \min _{x, \gamma} \gamma \text { such that } \begin{array}{l} c(x) \leq 0, \text { ceq }(x)=0 \\ A \cdot x \leq b, \quad \text { Aeq } \cdot x=b e q, \quad l \leq x \leq u \end{array} ~=~=~ \end{gathered}$	fgoalattain
Minimax	$\begin{aligned} & \min _{x} \max _{\left\{F_{i}\right\}}\left\{F_{i}(x)\right\} \text { such that } \\ & c(x) \leq 0, \text { ceq }(x)=0 \\ & A \cdot x \leq b, \text { Aeq } \cdot x=b e q, \quad l \leq x \leq u \end{aligned}$	fminimax
Semi-infinite minimization	$\begin{aligned} & \min _{x} f(x) \text { such that } \\ & \underset{K}{ }(x, w) \leq 0 \text { for all } w \\ & c(x) \leq 0, \text { ceq }(x)=0 \\ & A \cdot x \leq b, \text { Aeq } x=\text { beq, } l \leq x \leq u \end{aligned}$	fseminf
Binary integer programming	$\begin{gathered} \underset{x}{\text { ninimize }} \quad f^{\prime} \cdot x \\ \text { such that } \\ A \cdot x \leq b \\ \text { Aeq } \cdot x=b e q \\ x \text { binary } \end{gathered}$	bintprog

Equation Solving

Type	Notation	Function
Linear equations	$C \cdot x=d, n$ equations, n variables	(matrix left division)
Nonlinear equation of one variable	$f(a)=0$	fzero
Nonlinear equations	$F(x)=0, n$ equations, n variables	fsolve

Least-Squares (Curve Fitting)

Type	Notation	Function		
Linear least-squares	$\min _{x}\\|C \cdot x-d\\|_{2, m}^{2}$ equations, n variables	। (matrix left division)		
Nonnegative linear-least-squares	$\min _{x}\\|C \cdot x-d\\|_{2}^{2} \text { such that } x \geq 0$	lsqnonneg		
Constrained linear-least-squares	$\begin{aligned} & \min _{x}\\|C \cdot x-d\\|_{2}^{2} \text { such that } \\ & A^{x} \cdot x \leq b, \text { Aeq } x=b e q, \quad l \leq x \leq u \end{aligned}$	lsqlin		
Nonlinear least-squares	$\min _{x} \frac{1}{2}\\|F(x)\\|_{2}^{2}=\frac{1}{2} \sum_{i} F_{i}(x)^{2}$ such that $l \leq x \leq u$	lsqnonlin		
Nonlinear curve fitting	$\min _{x} \frac{1}{2} \\| F(x, x$ data $)-y$ data $\\|_{2}^{2}$ such that $l \leq x \leq u$	lsqcurvefit		

Using the Optimization Functions

This section provides some basic information about using the optimization functions.

Defining the Objective Function

Many of the optimization functions require you to create a MATLAB function that computes the objective function. The function should accept vector inputs and return a scalar output of type double. There are two ways to create the objective function:

- Create an anonymous function at the command line. For example, to create an anonymous function for x^{2}, enter

```
square = @(x) x.^2;
```

You then call the optimization function with square as the first input argument. You can use this method if the objective function is relatively simple and you do not need to use it again in a future MATLAB session.

- Write an M-file for the function. For example, to write the function x^{2} as a M-file, open a new file in the MATLAB editor and enter the following code:

```
function y = square(x)
y = x.^2;
```

You can then call the optimization function with @square as the first input argument. The @ sign creates a function handle for square. Use this method if the objective function is complicated or you plan to use it for more than one MATLAB session.

Note Because the functions in the Optimization Toolbox only accept inputs of type double, user-supplied objective and nonlinear constraint functions must return outputs of type double.

Maximizing Versus Minimizing

The optimization functions in the toolbox minimize the objective function. To maximize a function f, apply an optimization function to minimize $-f$. The
resulting point where the maximum of f occurs is also the point where the minimum of $-f$ occurs.

Changing Options

You can change the default options for an optimization function by passing in an options structure, which you create using the function optimset, as an input argument. See "Default Options Settings" on page 2-78 for more information.

Supplying the Gradient

Many of the optimization functions use the gradient of the objective function to search for the minimum. You can write a function that computes the gradient and pass it to an optimization function using the options structure. "Constrained Example with Gradients" on page 2-15 provides an example of how to do this. Providing a gradient function improves the accuracy and speed of the optimization function. However, for some objective functions it might not be possible to provide a gradient function, in which case the optimization function calculates it using an adaptive finite-difference method.

Medium- and Large-Scale Algorithms

This guide separates "medium-scale" algorithms from "large-scale" algorithms. Medium-scale is not a standard term and is used here only to distinguish these algorithms from the large-scale algorithms, which are designed to handle large-scale problems efficiently.

Medium-Scale Algorithms

The Optimization Toolbox routines offer a choice of algorithms and line search strategies. The principal algorithms for unconstrained minimization are the Nelder-Mead simplex search method and the BFGS (Broyden, Fletcher, Goldfarb, and Shanno) quasi-Newton method. For constrained minimization, minimax, goal attainment, and semi-infinite optimization, variations of sequential quadratic programming (SQP) are used. Nonlinear least-squares problems use the Gauss-Newton and Levenberg-Marquardt methods. Nonlinear equation solving also uses the trust-region dogleg algorithm.

A choice of line search strategy is given for unconstrained minimization and nonlinear least-squares problems. The line search strategies use safeguarded cubic and quadratic interpolation and extrapolation methods.

Large-Scale Algorithms

All the large-scale algorithms, except linear programming, are trust-region methods. Bound constrained problems are solved using reflective Newton methods. Equality constrained problems are solved using a projective preconditioned conjugate gradient iteration. You can use sparse iterative solvers or sparse direct solvers in solving the linear systems to determine the current step. Some choice of preconditioning in the iterative solvers is also available.

The linear programming method is a variant of Mehrotra's predictor-corrector algorithm, a primal-dual interior-point method.

Examples That Use Standard Algorithms

This section presents the medium-scale (i.e., standard) algorithms through a tutorial. Examples similar to those in the first part of this tutorial ("Unconstrained Minimization Example" on page 2-10 through the "Equality Constrained Example" on page 2-18) can also be found in the tutorial walk-through demo, tutdemo. (From the MATLAB Help browser or the MathWorks Web site documentation, you can click the demo name to display the demo.)

Note Medium-scale is not a standard term and is used to differentiate these algorithms from the large-scale algorithms described in Chapter 4, "Large-Scale Algorithms".

The tutorial uses the functions fminunc, fmincon, and fsolve. The other optimization routines, fgoalattain, fminimax, lsqnonlin, and fseminf, are used in a nearly identical manner, with differences only in the problem formulation and the termination criteria. The section "Multiobjective Examples" on page 2-26 discusses multiobjective optimization and gives several examples using lsqnonlin, fminimax, and fgoalattain, including how Simulink can be used in conjunction with the toolbox.

This section includes the following examples:

- "Unconstrained Minimization Example" on page 2-10
- "Nonlinear Inequality Constrained Example" on page 2-12
- "Constrained Example with Bounds" on page 2-13
- "Constrained Example with Gradients" on page 2-15
- "Gradient Check: Analytic Versus Numeric" on page 2-17
- "Equality Constrained Example" on page 2-18

It also discusses

- "Maximization" on page 2-19
- "Greater-Than-Zero Constraints" on page 2-19
- "Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20
- "Nonlinear Equations with Analytic Jacobian" on page 2-22
- "Nonlinear Equations with Finite-Difference Jacobian" on page 2-25
- "Multiobjective Examples" on page 2-26

Unconstrained Minimization Example

Consider the problem of finding a set of values $\left[x_{1}, x_{2}\right]$ that solves

$$
\begin{equation*}
\underset{x}{\operatorname{minimize}} f(x)=e^{x_{1}}\left(4 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2}+2 x_{2}+1\right) \tag{2-1}
\end{equation*}
$$

To solve this two-dimensional problem, write an M-file that returns the function value. Then, invoke the unconstrained minimization routine fminunc.

Step 1: Write an M-file objfun.m.

```
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
```


Step 2: Invoke one of the unconstrained optimization routines.

```
x0 = [-1,1]; % Starting guess
options = optimset('LargeScale','off');
[x,fval,exitflag,output] = fminunc(@objfun,x0,options)
```

After 40 function evaluations, this produces the solution

```
x =
    0.5000 -1.0000
```

The function at the solution x is returned in fval:
fval $=$
3.6609e-015

The exitflag tells whether the algorithm converged. exitflag $=1$ means a local minimum was found.

```
exitflag =
    1
```

The output structure gives more details about the optimization. For fminunc, it includes the number of iterations in iterations, the number of function evaluations in funcCount, the final step-size in stepsize, a measure of first-order optimality (which in this unconstrained case is the infinity norm of the gradient at the solution) in firstorderopt, and the type of algorithm used in algorithm:

```
output =
    iterations: 8
        funcCount: 66
            stepsize: 1
    firstorderopt: 1.2284e-007
        algorithm: 'medium-scale: Quasi-Newton line search'
            message: [1\times85 char]
```

When more than one local minimum exists, the initial guess for the vector $\left[x_{1}, \mathrm{x}_{2}\right]$ affects both the number of function evaluations and the value of the solution point. In the preceding example, $x 0$ is initialized to [-1,1].

The variable options can be passed to fminunc to change characteristics of the optimization algorithm, as in

```
x = fminunc(@objfun,x0,options);
```

options is a structure that contains values for termination tolerances and algorithm choices. An options structure can be created using the optimset function:

```
options = optimset('LargeScale','off');
```

In this example, we have turned off the default selection of the large-scale algorithm and so the medium-scale algorithm is used. Other options include controlling the amount of command line display during the optimization iteration, the tolerances for the termination criteria, whether a user-supplied gradient or Jacobian is to be used, and the maximum number of iterations or
function evaluations. See optimset, the individual optimization functions, and "Optimization Options" on page 6-8 for more options and information.

Nonlinear Inequality Constrained Example

If inequality constraints are added to Equation 2-1, the resulting problem can be solved by the fmincon function. For example, find x that solves

$$
\begin{equation*}
\underset{x}{\operatorname{minimize}} f(x)=e^{x_{1}}\left(4 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2}+2 x_{2}+1\right) \tag{2-2}
\end{equation*}
$$

subject to the constraints

$$
\begin{aligned}
& x_{1} x_{2}-x_{1}-x_{2} \leq-1.5 \\
& x_{1} x_{2} \geq-10
\end{aligned}
$$

Because neither of the constraints is linear, you cannot pass the constraints to fmincon at the command line. Instead you can create a second M-file, confun.m, that returns the value at both constraints at the current x in a vector c. The constrained optimizer, fmincon, is then invoked. Because fmincon expects the constraints to be written in the form $c(x) \leq 0$, you must rewrite your constraints in the form

$$
\begin{array}{r}
x_{1} x_{2}-x_{1}-x_{2}+1.5 \leq 0 \\
-x_{1} x_{2}-10 \leq 0 \tag{2-3}
\end{array}
$$

Step 1: Write an M-file objfun.m for the objective function.

```
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);
```


Step 2: Write an M-file confun.m for the constraints.

```
function [c, ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);
    -x(1)*x(2) - 10];
% Nonlinear equality constraints
ceq = [];
```


Step 3: Invoke constrained optimization routine.

```
x0 = [-1,1]; % Make a starting guess at the solution
options = optimset('LargeScale','off');
[x, fval] = ...
fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)
```

After 38 function calls, the solution \times produced with function value fval is

```
x =
    -9.5474 1.0474
fval =
    0.0236
```

You can evaluate the constraints at the solution by entering

```
[c,ceq] = confun(x)
```

This returns very small numbers close to zero, such as

```
c =
    1.0e-007 *
    -0.9032
        0.9032
ceq =
    []
```

Note that both constraint values are, to within a small tolerance, less than or equal to 0 ; that is, x satisfies $c(x) \leq 0$.

Constrained Example with Bounds

The variables in x can be restricted to certain limits by specifying simple bound constraints to the constrained optimizer function. For fmincon, the command

```
x = fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options);
```

limits x to be within the range lb <= x <= $u b$.

To restrict x in Equation 2 -2 to be greater than 0 (i.e., $x_{1} \geq 0, x_{2} \geq 0$), use the commands

```
x0 = [-1,1]; % Make a starting guess at the solution
lb = [0,0]; % Set lower bounds
ub = [ ]; % No upper bounds
options = optimset('LargeScale','off');
[x,fval] = ...
fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options)
[c, ceq] = confun(x)
```

Note that to pass in the lower bounds as the seventh argument to fmincon, you must specify values for the third through sixth arguments. In this example, we specified [] for these arguments since there are no linear inequalities or linear equalities.

After 13 function evaluations, the solution produced is

```
x =
        0 1.5000
fval =
            8.5000
C =
    0
    -10
ceq =
    []
```

When lb or ub contains fewer elements than x, only the first corresponding elements in x are bounded. Alternatively, if only some of the variables are bounded, then use - inf in lb for unbounded below variables and inf in ub for unbounded above variables. For example,

```
lb = [-inf 0];
ub = [10 inf];
```

bounds $x_{1} \leq 10,0 \leq x_{2} x_{1}$ has no lower bound, and x_{2} has no upper bound. Using inf and -inf give better numerical results than using a very large positive number or a very large negative number to imply lack of bounds.

Note that the number of function evaluations to find the solution is reduced because we further restricted the search space. Fewer function evaluations are usually taken when a problem has more constraints and bound limitations because the optimization makes better decisions regarding step size and regions of feasibility than in the unconstrained case. It is, therefore, good practice to bound and constrain problems, where possible, to promote fast convergence to a solution.

Constrained Example with Gradients

Ordinarily the medium-scale minimization routines use numerical gradients calculated by finite-difference approximation. This procedure systematically perturbs each of the variables in order to calculate function and constraint partial derivatives. Alternatively, you can provide a function to compute partial derivatives analytically. Typically, the problem is solved more accurately and efficiently if such a function is provided.

To solve Equation 2-2 using analytically determined gradients, do the following.

Step 1: Write an M-file for the objective function and gradient.

```
function [f,G] = objfungrad(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
% Gradient of the objective function
t = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
G = [ t + exp(x(1)) * (8*x(1) + 4*x(2)),
    exp(x(1))*(4*x(1)+4*x(2)+2)];
```


Step 2: Write an M-file for the nonlinear constraints and the gradients of the nonlinear constraints.

```
function [c,ceq,DC,DCeq] = confungrad(x)
c(1) = 1.5 + x(1) * x(2) - x(1) - x(2); %Inequality constraints
c(2) = -x(1) * x(2)-10;
% Gradient of the constraints
DC= [x(2)-1, -x(2);
    x(1)-1, -x(1)];
% No nonlinear equality constraints
```

```
ceq=[];
DCeq = [ ];
```

G contains the partial derivatives of the objective function, f, returned by objfungrad (x), with respect to each of the elements in x :

$$
\frac{\partial f}{\partial x}=\left[\begin{array}{c}
e^{x_{1}}\left(4 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2}+2 x_{2}+1\right)+e^{x_{1}}\left(8 x_{1}+4 x_{2}\right) \tag{2-4}\\
e^{x_{1}}\left(4 x_{1}+4 x_{2}+2\right)
\end{array}\right]
$$

The columns of DC contain the partial derivatives for each respective constraint (i.e., the ith column of DC is the partial derivative of the ith constraint with respect to x). So in the above example, DC is

$$
\left[\begin{array}{ll}
\frac{\partial c_{1}}{\partial x_{1}} & \frac{\partial c_{2}}{\partial x_{1}} \tag{2-5}\\
\frac{\partial c_{1}}{\partial x_{2}} & \frac{\partial c_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{ll}
x_{2}-1 & -x_{2} \\
x_{1}-1 & -x_{1}
\end{array}\right]
$$

Since you are providing the gradient of the objective in objfungrad.m and the gradient of the constraints in confungrad.m, you must tell fmincon that these M-files contain this additional information. Use optimset to turn the options GradObj and GradConstr to 'on ' in the example's existing options structure:

```
options = optimset(options,'GradObj','on','GradConstr','on');
```

If you do not set these options to ' on ' in the options structure, fmincon does not use the analytic gradients.

The arguments lb and ub place lower and upper bounds on the independent variables in x . In this example, there are no bound constraints and so they are both set to [].

Step 3: Invoke the constrained optimization routine.

```
x0 = [-1,1]; % Starting guess
```

```
options = optimset('LargeScale','off');
options = optimset(options,'GradObj','on','GradConstr','on');
lb = [ ]; ub = [ ]; % No upper or lower bounds
[x,fval] = fmincon(@objfungrad,x0,[],[],[],[],lb,ub,...
    @confungrad,options)
[c,ceq] = confungrad(x) % Check the constraint values at x
```

After 20 function evaluations, the solution produced is

```
x =
    -9.5474 1.0474
fval =
    0.0236
C =
    1.0e-14 *
    0.1110
    -0.1776
ceq =
    []
```


Gradient Check: Analytic Versus Numeric

When analytically determined gradients are provided, you can compare the supplied gradients with a set calculated by finite-difference evaluation. This is particularly useful for detecting mistakes in either the objective function or the gradient function formulation.

If you want such gradient checks, set the DerivativeCheck option to 'on' using optimset:

```
options = optimset(options,'DerivativeCheck','on');
```

The first cycle of the optimization checks the analytically determined gradients (of the objective function and, if they exist, the nonlinear constraints). If they do not match the finite-differencing gradients within a given tolerance, a warning message indicates the discrepancy and gives the option to abort the optimization or to continue.

Equality Constrained Example

For routines that permit equality constraints, nonlinear equality constraints must be computed in the M-file with the nonlinear inequality constraints. For linear equalities, the coefficients of the equalities are passed in through the matrix Aeq and the right-hand-side vector beq.

For example, if you have the nonlinear equality constraint $x_{1}^{2}+x_{2}=1$ and the nonlinear inequality constraint $x_{1} x_{2} \geq-10$, rewrite them as

$$
\begin{aligned}
& x_{1}^{2}+x_{2}-1=0 \\
& -x_{1} x_{2}-10 \leq 0
\end{aligned}
$$

and then solve the problem using the following steps.

Step 1: Write an M-file objfun.m.

```
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
```


Step 2: Write an M-file confuneq.m for the nonlinear constraints.

```
function [c, ceq] = confuneq(x)
% Nonlinear inequality constraints
c = -x(1)*x(2) - 10;
% Nonlinear equality constraints
ceq = x(1)^2 + x(2) - 1;
```


Step 3: Invoke constrained optimization routine.

```
x0 = [-1,1]; % Make a starting guess at the solution
options = optimset('LargeScale','off');
[x,fval] = fmincon(@objfun,x0,[],[],[],[],[],[],...
    @confuneq,options)
[c,ceq] = confuneq(x) % Check the constraint values at x
```

After 21 function evaluations, the solution produced is

```
x =
    -0.7529 0.4332
fval =
    1.5093
C =
    -9.6739
ceq =
    4.0684e-010
```

Note that ceq is equal to 0 within the default tolerance on the constraints of $1.0 \mathrm{e}-006$ and that c is less than or equal to 0 as desired.

Maximization

The optimization functions fminbnd, fminsearch, fminunc, fmincon, fgoalattain, fminimax, lsqcurvefit, and lsqnonlin all perform minimization of the objective function $f(x)$. Maximization is achieved by supplying the routines with $-f(x)$. Similarly, to achieve maximization for quadprog supply -H and -f, and for linprog supply -f.

Greater-Than-Zero Constraints

The Optimization Toolbox assumes that nonlinear inequality constraints are of the form $C_{i}(x) \leq 0$. Greater-than-zero constraints are expressed as less-than-zero constraints by multiplying them by -1 . For example, a constraint of the form $C_{i}(x) \geq 0$ is equivalent to the constraint $\left(-C_{i}(x)\right) \leq 0$, a constraint of the form $C_{i}(x) \geq b$ is equivalent to the constraint $\left(-C_{i}(x)+b\right) \leq 0$.

Parameterizing Your Function as a Nested Function

As an alternative to writing your function as an anonymous function, you can write a single M-file that

- Accepts the additional parameters to your function as inputs.
- Invokes the optimization function.
- Contains your function as a nested function.

The following example illustrates how to write an M-file to find zeros of the $x^{3}+b x+c$, for different values of the coefficients b and c .

```
function y = findzero(b, c, x0)
options = optimset('Display', 'off'); % Turn off Display
y = fsolve(@poly, x0, options);
    function y = poly(x) % Compute the polynomial.
    y = x^3 + b*x + c;
    end
end
```

The main function, findzero, does two things:

- Invokes the function fzero to find a zero of the polynomial.
- Computes the polynomial in a nested function, poly, which is called by fzero.

You can call findzero with any values of the coefficients b and c, which are then automatically passed to poly because it is a nested function.

As an example, to find a zero of the polynomial with $b=2$ and $c=3.5$, using the starting point $x 0=0$, call findzero as follows.

```
x = findzero(2, 3.5, 0)
```

This returns the zero

$$
x=
$$

-1.0945

Avoiding Global Variables via Anonymous and Nested Functions

The optimization functions in the toolbox use several types of functions that you define, including

- The objective function
- The constraint functions (for fmincon, fseminf, fgoalattain, and fminimax)
- The Hessian and Jacobian multiply functions, HessMult and JacobMult respectively, for the large-scale fmincon, fminunc, lsqnonlin, lsqcurvefit and fsolve
- An output function

Sometimes these functions might require some additional parameters besides the independent variable. There are two ways to provide these additional parameters to the function:

- Parameterize your function and then create a function handle to an anonymous function that calls your function. This is explained in "Parameterizing Your Function Using an Anonymous Function" on page 2-21.
- Write your function as a nested function within an outer function that calls the solver. This method has the additional advantage that you can share variables between your functions, as explained in "Parameterizing Your Function as a Nested Function" on page 2-19.

Parameterizing Your Function Using an Anonymous Function

As an example, suppose you want to find the zeros of the function ellipj using fsolve. fsolve expects the objective function to take one input argument, but the ellipj function takes two, u and m. You can see this function by typing

```
type ellipj
```

You are solving for the variable u, whiled m is simply a second parameter to specify which Jacobi elliptic function. To look for a zero near u0 $=3$ for $m=0.5$, you can create a function handle to an anonymous function that captures the current value of m from the workspace. Then, when the solver fsolve calls this function handle, the parameter m exists and ellipj will be called with two arguments. You pass this function handle to fsolve with the following commands:

```
uO = 3;
m = 0.5;
options = optimset('Display','off'); % Turn off Display
x = fsolve(@(u) ellipj(u,m), u0, options)
x =
```


Sharing Variables Using Nested Functions

The preceding example uses an existing function ellipj that has more arguments than would be passed by fsolve. If you are writing your own function, you can use the technique above, or you might find it more convenient to use a nested function. Nested functions have the additional advantage that you can share variables between them. For example, suppose you want to minimize an objective function, subject to an additional nonlinear constraint that the objective function should never exceed a certain value. To avoid having to recompute the objective function value in the constraint function, you can use a nested function.

You can see an example of sharing variables via nested functions in "Simulink Example Using fminimax" on page 2-33.

Nonlinear Equations with Analytic Jacobian

This example demonstrates the use of the default medium-scale fsolve algorithm. It is intended for problems where

- The system of nonlinear equations is square, i.e., the number of equations equals the number of unknowns.
- There exists a solution x such that $F(x)=0$.

The example uses fsolve to obtain the minimum of the banana (or Rosenbrock) function by deriving and then solving an equivalent system of nonlinear equations. The Rosenbrock function, which has a minimum at $F(x)=0$, is a common test problem in optimization. It has a high degree of nonlinearity and converges extremely slowly if you try to use steepest descent type methods. It is given by

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

First generalize this function to an n-dimensional function, for any positive, even value of n :

$$
f(x)=\sum_{i=1}^{n / 2} 100\left(x_{2 i}-x_{2 i-1}^{2}\right)^{2}+\left(1-x_{2 i-1}\right)^{2}
$$

This function is referred to as the generalized Rosenbrock function. It consists of n squared terms involving n unknowns.

Before you can use fsolve to find the values of x such that $F(x)=0$, i.e., obtain the minimum of the generalized Rosenbrock function, you must rewrite the function as the following equivalent system of nonlinear equations:

$$
\begin{aligned}
F(1) & =1-x_{1} \\
F(2) & =10\left(x_{2}-x_{1}^{2}\right) \\
F(3) & =1-x_{3} \\
F(4) & =10\left(x_{4}-x_{3}^{2}\right) \\
& \vdots \\
F(n-1) & =1-x_{n-1} \\
F(n) & =10\left(x_{n}-x_{n-1}^{2}\right)
\end{aligned}
$$

This system is square, and you can use fsolve to solve it. As the example demonstrates, this system has a unique solution given by $x_{i}=1, i=1, \ldots, n$.

Step 1: Write an M-file bananaobj.m to compute the objective function values and the Jacobian.

```
function [F,J] = bananaobj(x);
% Evaluate the vector function and the Jacobian matrix for
% the system of nonlinear equations derived from the general
% n-dimensional Rosenbrock function.
% Get the problem size
n = length(x);
if n == 0, error('Input vector, x, is empty.'); end
if mod(n,2) ~= 0,
    error('Input vector, x, must have an even number of
```

```
components.');
end
% Evaluate the vector function
odds = 1:2:n;
evens = 2:2:n;
F = zeros(n,1);
F(odds,1) = 1-x(odds);
F(evens,1) = 10.*(x(evens)-x(odds).^2);
% Evaluate the Jacobian matrix if nargout > 1
if nargout > 1
    c = -ones(n/2,1); C = sparse(odds,odds,c,n,n);
    d = 10*ones(n/2,1); D = sparse(evens,evens,d,n,n);
    e = -20.*x(odds); E = sparse(evens,odds,e,n,n);
    J = C + D + E;
end
```


Step 2: Call the solve routine for the system of equations.

```
n = 64;
x0(1:n,1) = -1.9;
x0(2:2:n,1) = 2;
options=optimset('Display','iter','Jacobian','on');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);
```

Use the starting point $x(i)=-1.9$ for the odd indices, and $x(i)=2$ for the even indices. Accept the fsolve default 'off' for the LargeScale option, and the default medium-scale nonlinear equation algorithm 'dogleg'. Then set Jacobian to 'on' to use the Jacobian defined in bananaobj.m. The fsolve function generates the following output:

			Norm of	First-order	Trust-region
Iteration	Func-count	$f(x)$	step	optimality	radius
0	1	4281.92		615	1
1	2	1546.86	1	329	1
2	3	112.552	2.5	34.8	2.5
3	4	106.24	6.25	34.1	6.25
4	5	106.24	6.25	34.1	6.25
5	6	51.3854	1.5625	6.39	1.56
6	7	51.3854	3.90625	6.39	3.91
7	8	43.8722	0.976562	2.19	0.977

8	9	37.0713	2.44141	6.27	2.44
9	10	37.0713	2.44141	6.27	2.44
10	11	26.2485	0.610352	1.52	0.61
11	12	20.6649	1.52588	4.63	1.53
12	13	17.2558	1.52588	6.97	1.53
13	14	8.48582	1.52588	4.69	1.53
14	15	4.08398	1.52588	3.77	1.53
15	16	1.77589	1.52588	3.56	1.53
16	17	0.692381	1.52588	3.31	1.53
17	18	0.109777	1.16206	1.66	1.53
18	19	0	0.0468565	0	1.53
Optimization terminated successfully:					
First-order optimality is less than options.TolFun					

Nonlinear Equations with Finite-Difference Jacobian

In the preceding example, the function bananaobj evaluates F and computes the Jacobian J . What if the code to compute the Jacobian is not available? By default, if you do not indicate that the Jacobian can be computed in the objective function (by setting the Jacobian option in options to 'on'), fsolve, lsqnonlin, and lsqcurvefit instead use finite differencing to approximate the Jacobian. This is the default Jacobian option. You can select finite differencing by setting Jacobian to 'off' using optimset.

This example uses bananaobj from the preceding example as the objective function, but sets Jacobian to 'off' so that fsolve approximates the Jacobian and ignores the second bananaobj output. It accepts the fsolve default 'off' for the LargeScale option, and the default nonlinear equation medium-scale algorithm 'dogleg':

```
n = 64;
x0(1:n,1) = -1.9;
x0(2:2:n,1) = 2;
options=optimset('Display','iter','Jacobian','off');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);
```

The example produces the following output:

Iteration	Func-count	$t \quad f(x)$	Norm of step	First-order optimality	Trust-region radius
0	65	4281.92		615	1
1	130	1546.86	1	329	1
2	195	112.552	2.5	34.8	2.5
3	260	106.24	6.25	34.1	6.25
4	261	106.24	6.25	34.1	6.25
5	326	51.3854	1.5625	6.39	1.56
6	327	51.3854	3.90625	6.39	3.91
7	392	43.8722	0.976562	2.19	0.977
8	457	37.0713	2.44141	6.27	2.44
9	458	37.0713	2.44141	6.27	2.44
10	523	26.2485	0.610352	1.52	0.61
11	588	20.6649	1.52588	4.63	1.53
12	653	17.2558	1.52588	6.97	1.53
13	718	8.48582	1.52588	4.69	1.53
14	783	4.08398	1.52588	3.77	1.53
15	848	1.77589	1.52588	3.56	1.53
16	9130	0.692381	1.52588	3.31	1.53
17	9780	0.109777	1.16206	1.66	1.53
18	1043	0	0.0468565	0	1.53
Optimization terminated successfully:					

The finite-difference version of this example requires the same number of iterations to converge as the analytic Jacobian version in the preceding example. It is generally the case that both versions converge at about the same rate in terms of iterations. However, the finite-difference version requires many additional function evaluations. The cost of these extra evaluations might or might not be significant, depending on the particular problem.

Multiobjective Examples

The previous examples involved problems with a single objective function. This section shows how to solve problems with multiobjective functions using lsqnonlin, fminimax, and fgoalattain. The first two examples show how to optimize parameters in a Simulink model.

This section presents the following examples:

- "Simulink Example Using lsqnonlin" on page 2-27
- "Simulink Example Using fminimax" on page 2-33
- "Signal Processing Example" on page 2-36

Simulink Example Using Isqnonlin

Suppose that you want to optimize the control parameters in the Simulink model optsim.mdl. (This model can be found in the Optimization Toolbox optim directory. Note that Simulink must be installed on your system to load this model.) The model includes a nonlinear process plant modeled as a Simulink block diagram shown in Plant with Actuator Saturation on page 2-27.

Plant with Actuator Saturation

The plant is an under-damped third-order model with actuator limits. The actuator limits are a saturation limit and a slew rate limit. The actuator saturation limit cuts off input values greater than 2 units or less than -2 units. The slew rate limit of the actuator is 0.8 units $/ \mathrm{sec}$. The closed-loop response of the system to a step input is shown in Closed-Loop Response on page 2-28. You can see this response by opening the model (type optsim at the command line or click the model name), and selecting Start from the Simulation menu. The response plots to the scope.

Closed-Loop Response

The problem is to design a feedback control loop that tracks a unit step input to the system. The closed-loop plant is entered in terms of the blocks where the plant and actuator have been placed in a hierarchical Subsystem block. A Scope block displays output trajectories during the design process. See Closed-Loop Model on page 2-28.

Tunable Variables are PID gains, Kp . Ki , and Kd .

Closed-Loop Model

One way to solve this problem is to minimize the error between the output and the input signal. The variables are the parameters of the Proportional Integral Derivative (PID) controller. If you only need to minimize the error at one time unit, it would be a single objective function. But the goal is to minimize the error for all time steps from 0 to 100 , thus producing a multiobjective function (one function for each time step).

The routine lsqnonlin is used to perform a least-squares fit on the tracking of the output. The tracking is performed via an M-file function tracklsq, which returns the error signal yout, the output computed by calling sim, minus the input signal 1. The code for tracklsq, shown below, is contained in the file runtracklsq.m, which is included in the Optimization Toolbox.

The function runtracklsq sets up all the needed values and then calls lsqnonlin with the objective function tracklsq, which is nested inside runtracklsq. The variable options passed to lsqnonlin defines the criteria and display characteristics. In this case you ask for output, use the medium-scale algorithm, and give termination tolerances for the step and objective function on the order of 0.001 .

To run the simulation in the model optsim, the variables $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$, a1, and a2 (a1 and a2 are variables in the Plant block) must all be defined. Kp, Ki, and Kd are the variables to be optimized. The function tracklsq is nested inside runtracklsq so that the variables a1 and a2 are shared between the two functions. The variables a1 and a2 are initialized in runtracklsq.

The objective function tracklsq must run the simulation. The simulation can be run either in the base workspace or the current workspace, that is, the workspace of the function calling sim, which in this case is the workspace of tracklsq. In this example, the simset command is used to tell sim to run the simulation in the current workspace by setting 'SrcWorkspace' to 'Current'. You can also choose a solver for sim using the simset function. The simulation is performed using a fixed-step fifth-order method to 100 seconds.

When the simulation is completed, the variables tout, xout, and yout are now in the current workspace (that is, the workspace of tracklsq). The Outport block in the block diagram model puts yout into the current workspace at the end of the simulation.

The following is the code for runtracklsq:

```
function [Kp,Ki,Kd] = runtracklsq
% RUNTRACKLSQ demonstrates using LSQNONLIN with Simulink.
optsim % Load the model
pidO = [0.63 0.0504 1.9688]; % Set initial values
a1 = 3; a2 = 43; % Initialize plant variables in model
options = optimset('LargeScale','off','Display','iter',...
    'TolX',0.001,'TolFun',0.001);
pid = lsqnonlin(@tracklsq, pid0, [], [], options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);
    function F = tracklsq(pid)
        % Track the output of optsim to a signal of 1
        % Variables a1 and a2 are needed by the model optsim.
        % They are shared with RUNTRACKLSQ so do not need to be
        % redefined here.
        Kp = pid(1);
        Ki = pid(2);
        Kd = pid(3);
        % Compute function value
        simopt = simset('solver','ode5','SrcWorkspace','Current');
        % Initialize sim options
        [tout,xout,yout] = sim('optsim',[0 100],simopt);
        F = yout-1;
    end
end
```

When you run runtracklsq, the optimization gives the solution for the proportional, integral, and derivative ($\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$) gains of the controller after 64 function evaluations.
[Kp, Ki, Kd] = runtracklsq

		Directional			
Iteration	Func-count	Residual	Step-size	derivative	Lambda
0	4	8.66531			
1	18	5.21604	85.4	-0.00836	6.92469

The resulting closed-loop step response is shown in Closed-Loop Response Using lsqnonlin on page 2-32.

Closed-Loop Response Using Isqnonlin

Abstract

Note The call to sim results in a call to one of the Simulink ordinary differential equation (ODE) solvers. A choice must be made about the type of solver to use. From the optimization point of view, a fixed-step solver is the best choice if that is sufficient to solve the ODE. However, in the case of a stiff system, a variable-step method might be required to solve the ODE.

The numerical solution produced by a variable-step solver, however, is not a smooth function of parameters, because of step-size control mechanisms. This lack of smoothness can prevent the optimization routine from converging. The lack of smoothness is not introduced when a fixed-step solver is used. (For a further explanation, see [1].)

The Simulink Response Optimization is recommended for solving multiobjective optimization problems in conjunction with variable-step solvers in Simulink. It provides a special numeric gradient computation that works with Simulink and avoids introducing a problem of lack of smoothness.

Simulink Example Using fminimax

Another approach to optimizing the control parameters in the Simulink model shown in Plant with Actuator Saturation on page 2-27 is to use the fminimax function. In this case, rather than minimizing the error between the output and the input signal, you minimize the maximum value of the output at any time t between 0 and 100 .

The code for this example, shown below, is contained in the function runtrackmm, in which the objective function is simply the output yout returned by the sim command. But minimizing the maximum output at all time steps might force the output to be far below unity for some time steps. To keep the output above 0.95 after the first 20 seconds, the constraint function trackmmcon contains the constraint yout >= 0.95 from $t=20$ to $\mathrm{t}=100$. Because constraints must be in the form $\mathrm{g}<=0$, the constraint in the function is $g=-y o u t(20: 100)+.95$.

Both trackmmobj and trackmmcon use the result yout from sim, calculated from the current PID values. The nonlinear constraint function is always called immediately after the objective function in fmincon, fminimax, fgoalattain, and fseminf with the same values. This way you can avoid
calling the simulation twice by using nested functions so that the value of yout can be shared between the objective and constraint functions as long as it is initialized in runtrackmm.

The following is the code for runtrackmm:

```
function [Kp, Ki, Kd] = runtrackmm
optsim
pidO = [0.63 0.0504 1.9688];
% a1, a2, yout are shared with TRACKMMOBJ and TRACKMMCON
a1 = 3; a2 = 43; % Initialize plant variables in model
yout = []; % Give yout an initial value
options = optimset('Display','iter',...
    'TolX',0.001,'TolFun',0.001);
pid = fminimax(@trackmmobj,pid0,[],[],[],[],[],[],...
    @trackmmcon,options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);
    function F = trackmmobj(pid)
        % Track the output of optsim to a signal of 1.
        % Variables a1 and a2 are shared with RUNTRACKMM.
        % Variable yout is shared with RUNTRACKMM and
        % RUNTRACKMMCON.
        Kp = pid(1);
        Ki = pid(2);
        Kd = pid(3);
        % Compute function value
        opt = simset('solver','ode5','SrcWorkspace','Current');
        [tout,xout,yout] = sim('optsim',[0 100],opt);
        F = yout;
    end
    function [c,ceq] = trackmmcon(pid)
        % Track the output of optsim to a signal of 1.
        % Variable yout is shared with RUNTRACKMM and
        % TRACKMMOBJ
```

```
    % Compute constraints.
    % We know objective function TRACKMMOBJ is called before
    this
    % constraint function and so yout is current.
    c = -yout(20:100)+.95;
    ceq=[];
    end
end
```

When you run the code, it returns the following results:
[Kp,Ki,Kd] = runtrackmm

	Max				
Iter	F-count	$\{F$, constraints $\}$	Step-size	derivative	Procedure
0	5	1.11982			
1	11	1.264	1	1.18	
2	17	1.055	1	-0.172	
3	23	1.004	1	-0.0128	Hessian modified twice
4	29	0.9997	1	$3.48 \mathrm{e}-005$	Hessian modified
5	35	0.9996	1	$-1.36 e-006$	Hessian modified twice

Optimization terminated: Search direction less than 2*options.TolX
and maximum constraint violation is less than options.TolCon.
Active inequalities (to within options.TolCon $=1 \mathrm{e}-006$):
lower upper ineqlin ineqnonlin
1
14
182
$K p=$
0.5894

Ki =
0.0605
$K d=$
5.5295

The last value shown in the $\operatorname{MAX}\{F$, constraints $\}$ column of the output shows that the maximum value for all the time steps is 0.9996 . The closed loop response with this result is shown in the following Closed-Loop Response Using fminimax on page 2-36.

This solution differs from the solution lsqnonlin because you are solving different problem formulations.

Closed-Loop Response Using fminimax

Signal Processing Example

Consider designing a linear-phase Finite Impulse Response (FIR) filter. The problem is to design a lowpass filter with magnitude one at all frequencies between 0 and 0.1 Hz and magnitude zero between 0.15 and 0.5 Hz .

The frequency response $H(f)$ for such a filter is defined by

$$
\begin{align*}
H(f) & =\sum_{n=0}^{2 M} h(n) e^{-j 2 \pi f n} \\
& =A(f) e^{-j 2 \pi f M} \\
A(f) & =\sum_{n=0}^{M-1} a(n) \cos (2 \pi f n)
\end{align*}
$$

where $A(f)$ is the magnitude of the frequency response. One solution is to apply a goal attainment method to the magnitude of the frequency response. Given a function that computes the magnitude, the function fgoalattain will attempt to vary the magnitude coefficients $\alpha(n)$ until the magnitude response matches the desired response within some tolerance. The function that computes the magnitude response is given in filtmin.m. This function takes a, the magnitude function coefficients, and w, the discretization of the frequency domain we are interested in.

To set up a goal attainment problem, you must specify the goal and weights for the problem. For frequencies between 0 and 0.1, the goal is one. For frequencies between 0.15 and 0.5 , the goal is zero. Frequencies between 0.1 and 0.15 are not specified, so no goals or weights are needed in this range.

This information is stored in the variable goal passed to fgoalattain. The length of goal is the same as the length returned by the function filtmin. So that the goals are equally satisfied, usually weight would be set to abs (goal). However, since some of the goals are zero, the effect of using weight=abs (goal) will force the objectives with weight 0 to be satisfied as hard constraints, and the objectives with weight 1 possibly to be underattained (see "Goal Attainment Method" on page 3-49). Because all the goals are close in magnitude, using a weight of unity for all goals will give them equal priority. (Using abs (goal) for the weights is more important when the magnitude of goal differs more significantly.) Also, setting

```
options = optimset('GoalsExactAchieve',length(goal));
```

specifies that each objective should be as near as possible to its goal value (neither greater nor less than).

Step 1: Write an M-file filtmin.m.

```
function y = filtmin(a,w)
n = length(a);
y = cos(w'*(0:n-1)*2*pi)*a ;
```


Step 2: Invoke optimization routine.

```
% Plot with initial coefficients
a0 = ones(15,1);
incr = 50;
w = linspace(0,0.5,incr);
y0 = filtmin(a0,w);
clf, plot(w,y0,'.r');
drawnow;
% Set up the goal attainment problem
w1 = linspace(0,0.1,incr) ;
w2 = linspace(0.15,0.5,incr);
wO = [w1 w2];
goal = [1.0*ones(1,length(w1)) zeros(1,length(w2))];
weight = ones(size(goal));
% Call fgoalattain
options = optimset('GoalsExactAchieve',length(goal));
[a,fval,attainfactor,exitflag]=fgoalattain(@(x) filtmin(x,w0)...
    a0,goal,weight,[],[],[],[],[],[],[],options);
% Plot with the optimized (final) coefficients
y = filtmin(a,w);
hold on, plot(w,y,'r')
axis([0 0.5 -3 3])
xlabel('Frequency (Hz)')
ylabel('Magnitude Response (dB)')
legend('initial', 'final')
grid on
```

Compare the magnitude response computed with the initial coefficients and the final coefficients (Magnitude Response with Initial and Final Magnitude Coefficients on page 2-39). Note that you could use the firpm function in the Signal Processing Toolbox to design this filter.

Magnitude Response with Initial and Final Magnitude Coefficients

Large-Scale Examples

Some of the optimization functions include algorithms for continuous optimization problems especially targeted to large problems with sparsity or structure. The main large-scale algorithms are iterative, i.e., a sequence of approximate solutions is generated. In each iteration a linear system is (approximately) solved. The linear systems are solved using the sparse matrix capabilities of MATLAB and a variety of sparse linear solution techniques, both iterative and direct.

Generally speaking, the large-scale optimization methods preserve structure and sparsity, using exact derivative information wherever possible. To solve the large-scale problems efficiently, some problem formulations are restricted (such as only solving overdetermined linear or nonlinear systems), or require additional information (e.g., the nonlinear minimization algorithm requires that the gradient be computed in the user-supplied function).

This section summarizes the kinds of problems covered by large-scale methods and provides these examples:

- "Nonlinear Equations with Jacobian" on page 2-44
- "Nonlinear Equations with Jacobian Sparsity Pattern" on page 2-47
- "Nonlinear Least-Squares with Full Jacobian Sparsity Pattern" on page 2-49
- "Nonlinear Minimization with Gradient and Hessian" on page 2-51
- "Nonlinear Minimization with Gradient and Hessian Sparsity Pattern" on page 2-53
- "Nonlinear Minimization with Bound Constraints and Banded Preconditioner" on page 2-55
- "Nonlinear Minimization with Equality Constraints" on page 2-58
- "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 2-60
- "Quadratic Minimization with Bound Constraints" on page 2-64
- "Quadratic Minimization with a Dense but Structured Hessian" on page 2-66
- "Linear Least-Squares with Bound Constraints" on page 2-72
- "Linear Programming with Equalities and Inequalities" on page 2-73
- "Linear Programming with Dense Columns in the Equalities" on page 2-75

Problems Covered by Large-Scale Methods

This section describes how to formulate problems for functions that use large-scale methods. It is important to keep in mind that there are some restrictions on the types of problems covered by large-scale methods. For example, the function fmincon cannot use large-scale methods when the feasible region is defined by either of the following:

- Nonlinear equality or inequality constraints
- Both upper- or lower-bound constraints and equality constraints

When a function is unable to solve a problem using large-scale methods, it reverts to medium-scale methods.

Formulating Problems with Large-Scale Methods

The following table summarizes how to set up problems for large-scale methods and provide the necessary input for the optimization functions. For each function, the second column of the table describes how to formulate the problem and the third column describes what additional information is needed for the large-scale algorithms. For fminunc and fmincon, the gradient must be computed along with the objective in the user-supplied function (the gradient is not required for the medium-scale algorithms).

Since these methods can also be used on small- to medium-scale problems that are not necessarily sparse, the last column of the table emphasizes what conditions are needed for large-scale problems to run efficiently without exceeding your computer system's memory capabilities, e.g., the linear constraint matrices should be sparse. For smaller problems the conditions in the last column are unnecessary.

Note The following table lists the functions in order of increasing problem complexity.

Several examples, which follow this table, clarify the contents of the table.

Large-Scale Problem Coverage and Requirements

Function	Problem Formulations	Additional Information Needed	For Large Problems				
fminunc	$\min _{x} f(x)$	Must provide gradient for $f(x)$ in fun.	- Provide sparsity structure of the Hessian, or compute the Hessian in fun. - The Hessian should be sparse.				
fmincon	- $\min _{x} f(x)$ such that $l \leq x \leq u$ where $l<u$. - $\min _{x} f(x)$ such that Aeq : $x=b e q$, and Aeq is an m-by-n matrix where $m \leq n$.	Must provide gradient for $f(x)$ in fun.	- Provide sparsity structure of the Hessian or compute the Hessian in fun. - The Hessian should be sparse. - Aeq should be sparse.				
lsqnonlin	$\text { - } \left.\left.\min _{x} \frac{1}{2}\\|F(x)\\|_{2}^{2}=\frac{1}{2} \sum_{i} F_{i}(x)^{2}\right) \text { (} \min _{x} \frac{1}{2}\\|F(x)\\|_{2}^{2}=\frac{1}{2} \sum_{i} F_{i}(x)^{2}\right)$ such that $l \leq x \leq u$ where $l<u$. $F(x)$ must be overdetermined (have at least as many equations as variables).	None	- Provide sparsity structure of the Jacobian or compute the Jacobian in fun. - The Jacobian should be sparse.				

Large-Scale Problem Coverage and Requirements (Continued)

Function	Problem Formulations	Additional Information Needed	For Large Problems				
lsqcurvefit	- $\min _{x} \frac{1}{2} \\| F(x, x$ data $)-y$ data $\\|_{2}^{2}$ - $\min _{x} \frac{1}{2} \\| F(x, x$ data $)-y$ data $\\|_{2}^{2}$ such that $l \leq x \leq u$ where $l<u$ $F(x, x d a t a)$ must be overdetermined (have at least as many equations as variables).	None	- Provide sparsity structure of the Jacobian or compute the Jacobian in fun. - The Jacobian should be sparse.				
fsolve	$F(x)=0$ $F(x)$ must have the same number of equations as variables.	None	- Provide sparsity structure of the Jacobian or compute the Jacobian in fun. - The Jacobian should be sparse.				
lsqlin	$\min _{x}\\|C \cdot x-d\\|_{2}^{2}$ such that $l \leq x \leq u$ where $l<u$. C is an m-by-n matrix where $m \geq n$, i.e., the problem must be overdetermined.	None	C should be sparse.				

Large-Scale Problem Coverage and Requirements (Continued)

Function	Problem Formulations	Additional Information Needed	For Large Problems
linprog	$\min _{x} f^{T} x$ such that $A \cdot x \leq b$ and Aeq $\cdot x=$ beq, where $l \leq x \leq u$.	None	A and Aeq should be sparse.
quadprog	- $\min _{x} \frac{1}{2} x^{T} H x+f^{T} x$ such that $l \leq x \leq u$ where $l<u$ - $\min _{x} \frac{1}{2} x^{T} H x+f^{T} x$ such that Aeq $x=b e q$, and Aeq is an m-by-n matrix where $m \leq n$.	None	- H should be sparse. - Aeq should be sparse.

In the following examples, many of the M-file functions are available in the Optimization Toolbox optim directory. Most of these do not have a fixed problem size, i.e., the size of your starting point xstart determines the size problem that is computed. If your computer system cannot handle the size suggested in the examples below, use a smaller-dimension start point to run the problems. If the problems have upper or lower bounds or equalities, you must adjust the size of those vectors or matrices as well.

Nonlinear Equations with Jacobian

Consider the problem of finding a solution to a system of nonlinear equations whose Jacobian is sparse. The dimension of the problem in this example is 1000 . The goal is to find x such that $F(x)=0$. Assuming $n=1000$, the nonlinear equations are

$$
\begin{aligned}
& F(1)=3 x_{1}-2 x_{1}^{2}-2 x_{2}+1 \\
& F(i)=3 x_{i}-2 x_{i}^{2}-x_{i-1}-2 x_{i+1}+1 \\
& F(n)=3 x_{n}-2 x_{n}^{2}-x_{n-1}+1
\end{aligned}
$$

To solve a large nonlinear system of equations, $F(x)=0$, use the large-scale method available in fsolve.

Step 1: Write an M-file nlsf1.m that computes the objective function values and the Jacobian.

```
function [F,J] = nlsf1(x);
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1)1+ 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
% Evaluate the Jacobian if nargout > 1
if nargout > 1
    d = -4*x + 3*ones(n,1); D = sparse(1:n,1:n,d,n,n);
    c = -2*ones(n-1,1); C = sparse(1:n-1,2:n,c,n,n);
    e = -ones(n-1,1); E = sparse(2:n,1:n-1,e,n,n);
    J = C + D + E;
end
```


Step 2: Call the solve routine for the system of equations.

```
xstart = -ones(1000,1);
fun = @nlsf1;
options =
optimset('Display','iter','LargeScale','on','Jacobian','on');
[x,fval,exitflag,output] = fsolve(fun,xstart,options);
```

A starting point is given as well as the function name. The default method for fsolve is medium-scale, so it is necessary to specify 'LargeScale' as 'on' in the options argument. Setting the Display option to 'iter' causes fsolve
to display the output at each iteration. Setting Jacobian to 'on', causes fsolve to use the Jacobian information available in nlsf1.m.

The commands display this output:

Iteration	Func-count	$t \quad f(x)$	Norm of step	First-order optimality	CG- Iterations
1	2	1011	1	19	0
2	3	16.1942	7.91898	2.35	3
3	4	0.0228027	1.33142	0.291	3
4	50	0.000103359	0.0433329	0.0201	4
5	67	7.3792e-007	0.0022606	0.000946	4
6	74.	.02299e-010	0.000268381	4.12e-005	5
Optimization terminated successfully:					
Relative function value changing by less than OPTIONS.TolFun					

A linear system is (approximately) solved in each major iteration using the preconditioned conjugate gradient method. The default value for PrecondBandWidth is 0 in options, so a diagonal preconditioner is used. (PrecondBandWidth specifies the bandwidth of the preconditioning matrix. A bandwidth of 0 means there is only one diagonal in the matrix.)

From the first-order optimality values, fast linear convergence occurs. The number of conjugate gradient (CG) iterations required per major iteration is low, at most five for a problem of 1000 dimensions, implying that the linear systems are not very difficult to solve in this case (though more work is required as convergence progresses).

It is possible to override the default choice of preconditioner (diagonal) by choosing a banded preconditioner through the use of the option PrecondBandWidth. If you want to use a tridiagonal preconditioner, i.e., a preconditioning matrix with three diagonals (or bandwidth of one), set PrecondBandWidth to the value 1 :

```
options = optimset('Display','iter','Jacobian','on',...
    'LargeScale','on','PrecondBandWidth',1);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);
```

In this case the output is

Iteration	Func-count	t $\quad \mathrm{f}(\mathrm{x})$	Norm of step	First-order optimality	```CG- Iterations```
1	2	1011	1	19	0
2	3	16.0839	7.92496	1.92	1
3	4	0.0458181	1.3279	0.579	1
4	50	0.000101184	0.0631898	0.0203	2
5	63	3.16615e-007	0.00273698	0.00079	2
6	$7 \quad 9$	9.72481e-010	0.00018111	5.82e-005	2
Optimization terminated successfully:					
elative function value changing by less than OPTION					

Note that although the same number of iterations takes place, the number of PCG iterations has dropped, so less work is being done per iteration. See "Preconditioned Conjugate Gradients" on page 4-7.

Nonlinear Equations with Jacobian Sparsity Pattern

In the preceding example, the function nlsf1 computes the Jacobian J , a sparse matrix, along with the evaluation of F. What if the code to compute the Jacobian is not available? By default, if you do not indicate that the Jacobian can be computed in nlsf1 (by setting the Jacobian option in options to 'on'), fsolve, lsqnonlin, and lsqcurvefit instead uses finite differencing to approximate the Jacobian.

In order for this finite differencing to be as efficient as possible, you should supply the sparsity pattern of the Jacobian, by setting JacobPattern to 'on' in options. That is, supply a sparse matrix Jstr whose nonzero entries correspond to nonzeros of the Jacobian for all x. Indeed, the nonzeros of Jstr can correspond to a superset of the nonzero locations of J; however, in general the computational cost of the sparse finite-difference procedure will increase with the number of nonzeros of Jstr.

Providing the sparsity pattern can drastically reduce the time needed to compute the finite differencing on large problems. If the sparsity pattern is not provided (and the Jacobian is not computed in the objective function either) then, in this problem nlsfs1, the finite-differencing code attempts to compute all 1000-by-1000 entries in the Jacobian. But in this case there are only 2998 nonzeros, substantially less than the $1,000,000$ possible nonzeros
the finite-differencing code attempts to compute. In other words, this problem is solvable if you provide the sparsity pattern. If not, most computers run out of memory when the full dense finite-differencing is attempted. On most small problems, it is not essential to provide the sparsity structure.

Suppose the sparse matrix Jstr, computed previously, has been saved in file nlsdat1.mat. The following driver calls fsolve applied to nlsf1a, which is the same as nlsf1 except that only the function values are returned; sparse finite-differencing is used to estimate the sparse Jacobian matrix as needed.

Step 1: Write an M-file nlsfla.m that computes the objective function values.

```
function F = nlsf1a(x);
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
```


Step 2: Call the system of equations solve routine.

```
xstart = -ones(1000,1);
fun = @nlsf1a;
load nlsdat1 % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...
    'LargeScale','on','PrecondBandWidth',1);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);
```

In this case, the output displayed is

Iteration	Func-count	t $\quad \mathrm{f}(\mathrm{x})$	Norm of step	First-order optimality	$\begin{aligned} & \text { CG- } \\ & \text { Iterations } \end{aligned}$
1	6	1011	1	19	0
2	11	16.0839	7.92496	1.92	1
3	16	0.0458181	1.3279	0.579	1
4	210.0	0.000101184	0.0631898	0.0203	2
5	26 3.	3.16615e-007	0.00273698	0.00079	2

```
    6 31 9.72482e-010 0.00018111 5.82e-005 2
Optimization terminated successfully:
    Relative function value changing by less than OPTIONS.TolFun
```

Alternatively, it is possible to choose a sparse direct linear solver (i.e., a sparse QR factorization) by indicating a "complete" preconditioner. For example, if you set PrecondBandWidth to Inf, then a sparse direct linear solver is used instead of a preconditioned conjugate gradient iteration:

```
xstart = -ones(1000,1);
fun = @nlsf1a;
load nlsdat1 % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...
    'LargeScale','on','PrecondBandWidth',inf);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);
```

and the resulting display is

			Norm of	First-order	CG-
Iteration	Func-count	$f(x)$	step	optimality	Iterations
1	6	1011	1	19	0
2	11	15.9018	7.92421	1.89	1
3	16	0.0128163	1.32542	0.0746	1
4	21	$1.73538 e-008$	0.0397925	0.000196	1
5	26	$1.13169 e-018$	$4.55544 e-005$	$2.76 e-009$	1
Optimization terminated successfully:					
Relative function value changing by less than OPTIONS.TolFun					

When the sparse direct solvers are used, the CG iteration is 1 for that (major) iteration, as shown in the output under CG-Iterations. Notice that the final optimality and $f(x)$ value (which for fsolve, $f(x)$, is the sum of the squares of the function values) are closer to zero than using the PCG method, which is often the case.

Nonlinear Least-Squares with Full Jacobian Sparsity Pattern

The large-scale methods in lsqnonlin, lsqcurvefit, and fsolve can be used with small- to medium-scale problems without computing the Jacobian in fun or providing the Jacobian sparsity pattern. (This example also applies to the case of using fmincon or fminunc without computing the Hessian or supplying
the Hessian sparsity pattern.) How small is small- to medium-scale? No absolute answer is available, as it depends on the amount of virtual memory available in your computer system configuration.

Suppose your problem has m equations and n unknowns. If the command $J=\operatorname{sparse}(o n e s(m, n))$ causes an Out of memory error on your machine, then this is certainly too large a problem. If it does not result in an error, the problem might still be too large, but you can only find out by running it and seeing if MATLAB is able to run within the amount of virtual memory available on your system.

Let's say you have a small problem with 10 equations and 2 unknowns, such as finding x that minimizes

$$
\sum_{k=1}^{10}\left(2+2 k-e^{k x_{1}}-e^{k x_{2}}\right)^{2}
$$

starting at the point $\mathrm{x}=[0.3,0.4]$.
Because lsqnonlin assumes that the sum of squares is not explicitly formed in the user function, the function passed to lsqnonlin should instead compute the vector valued function

$$
F_{k}(x)=2+2 k-e^{k x_{1}}-e^{k x_{2}}
$$

for $k=1$ to 10 (that is, F should have 10 components).

Step 1: Write an M-file myfun.m that computes the objective function values.

```
function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-\operatorname{exp}(\mp@subsup{k}{}{*}x(2));
```


Step 2: Call the nonlinear least-squares routine.

```
x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0) % Invoke optimizer
```

Because the Jacobian is not computed in myfun.m, and no Jacobian sparsity pattern is provided by the JacobPattern option in options, lsqnonlin calls the large-scale method with JacobPattern set to Jstr $=$ sparse(ones $(10,2))$. This is the default for lsqnonlin. Note that the Jacobian option in options is set to 'off' by default.

When the finite-differencing routine is called the first time, it detects that Jstr is actually a dense matrix, i.e., that no speed benefit is derived from storing it as a sparse matrix. From then on the finite-differencing routine uses Jstr $=$ ones (10,2) (a full matrix) for the optimization computations.

After about 24 function evaluations, this example gives the solution

```
x =
    0.2578 0.2578
resnorm % Residual or sum of squares
resnorm =
    124.3622
```

Most computer systems can handle much larger full problems, say into the 100 s of equations and variables. But if there is some sparsity structure in the Jacobian (or Hessian) that can be taken advantage of, the large-scale methods will always run faster if this information is provided.

Nonlinear Minimization with Gradient and Hessian

This example involves solving a nonlinear minimization problem with a tridiagonal Hessian matrix $H(x)$ first computed explicitly, and then by providing the Hessian's sparsity structure for the finite-differencing routine.

The problem is to find x to minimize

$$
\begin{equation*}
f(x)=\sum_{i=1}^{n-1}\left[\left(x_{i}^{2}\right)^{\left(x_{i+1}^{2}+1\right)}+\left(x_{i+1}^{2}\right)^{\left(x_{i}^{2}+1\right)}\right] \tag{2-7}
\end{equation*}
$$

where $n=1000$.

Step 1: Write an M-file brownfgh.m that computes the objective function, the gradient of the objective, and the sparse tridiagonal Hessian matrix.

This file is rather long and is not included here. You can view the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the objective function, you need to use optimset to indicate that this information is available in brownfgh, using the GradObj and Hessian options.

Step 2: Call a nonlinear minimization routine with a starting point xstart.

```
n = 1000;
xstart = -ones(n,1);
xstart(2:2:n,1) = 1;
options = optimset('GradObj','on','Hessian','on');
[x,fval,exitflag,output] = fminunc(@brownfgh,xstart,options);
```

This 1000 variable problem is solved in about 7 iterations and 7 conjugate gradient iterations with a positive exitflag indicating convergence. The final function value and measure of optimality at the solution x are both close to zero. For fminunc, the first order optimality is the infinity norm of the gradient of the function, which is zero at a local minimum:

```
exitflag =
    1
fval =
    2.8709e-017
output.iterations
ans =
    7
output.cgiterations
ans =
```

```
    7
output.firstorderopt
ans =
```

 4.7948e-010

Nonlinear Minimization with Gradient and Hessian Sparsity Pattern

Next, solve the same problem but the Hessian matrix is now approximated by sparse finite differences instead of explicit computation. To use the large-scale method in fminunc, you must compute the gradient in fun; it is not optional as in the medium-scale method.

The M-file function brownfg computes the objective function and gradient.

Step 1: Write an M-file brownfg.m that computes the objective function and the gradient of the objective.

```
function [f,g] = brownfg(x)
% BROWNFG Nonlinear minimization test problem
%
% Evaluate the function
n=length(x); y=zeros(n,1);
i=1:(n-1);
y(i)=(x(i).^2).^(x(i+1).^2+1) + ...
    (x(i+1).^2).^(x(i).^2+1);
    f=sum(y);
% Evaluate the gradient if nargout > 1
    if nargout > 1
        i=1:(n-1); g = zeros(n,1);
        g(i) = 2*(x(i+1).^2+1).*x(i).* ...
                            ((x(i).^2).^(x(i+1).^2))+ ...
                            2*x(i).*((x(i+1).^2).^(x(i).^2+1)).* ...
                log(x(i+1).^2);
            g(i+1) = g(i+1) + ...
                                    2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).* ...
                                    log(x(i).^2) + ...
```

```
2*(x(i).^2+1).*x(i+1).* ...
((x(i+1).^2).^(x(i).^2));
```

end

To allow efficient computation of the sparse finite-difference approximation of the Hessian matrix $H(x)$, the sparsity structure of H must be predetermined. In this case assume this structure, Hstr, a sparse matrix, is available in file brownhstr.mat. Using the spy command you can see that Hstr is indeed sparse (only 2998 nonzeros). Use optimset to set the HessPattern option to Hstr. When a problem as large as this has obvious sparsity structure, not setting the HessPattern option requires a huge amount of unnecessary memory and computation because fminunc attempts to use finite differencing on a full Hessian matrix of one million nonzero entries.

You must also set the GradObj option to 'on ' using optimset, since the gradient is computed in brownfg.m. Then execute fminunc as shown in Step 2.

Step 2: Call a nonlinear minimization routine with a starting point xstart.

```
fun = @brownfg;
load brownhstr %Get Hstr, structure of the Hessian
spy(Hstr) % View the sparsity structure of Hstr
n = 1000;
xstart = -ones(n,1);
xstart(2:2:n,1) = 1;
options = optimset('GradObj','on','HessPattern',Hstr);
[x,fval,exitflag,output] = fminunc(fun,xstart,options);
```

This 1000 -variable problem is solved in eight iterations and seven conjugate gradient iterations with a positive exitflag indicating convergence. The final function value and measure of optimality at the solution x are both close to zero (for fminunc, the first-order optimality is the infinity norm of the gradient of the function, which is zero at a local minimum):

```
exitflag =
    1
fval =
```

 7.4739e-017
    ```
output.iterations
ans =
    7
output.cgiterations
ans =
    7
output.firstorderopt
ans =
    7.9822e-010
```


Nonlinear Minimization with Bound Constraints and Banded Preconditioner

The goal in this problem is to minimize the nonlinear function

$$
f(x)=1+\sum_{i=1}^{n}\left|\left(3-2 x_{i}\right) x_{i}-x_{i-1}-x_{i+1}+1\right|^{p}+\sum_{i=1}^{\frac{n}{2}}\left|x_{i}+x_{i+n / 2}\right|^{p}
$$

such that $-10.0 \leq x_{i} \leq 10.0$, where n is 800 (n should be a multiple of 4), $p=7 / 3$, and $x_{0}=x_{n+1}=0$.

Step 1: Write an M-file tbroyfg.m that computes the objective function and the gradient of the objective

The M-file function tbroyfg.m computes the function value and gradient. This file is long and is not included here. You can see the code for this function using the command

```
type tbroyfg
```

The sparsity pattern of the Hessian matrix has been predetermined and stored in the file tbroyhstr.mat. The sparsity structure for the Hessian of this problem is banded, as you can see in the following spy plot.

```
load tbroyhstr
spy(Hstr)
```


In this plot, the center stripe is itself a five-banded matrix. The following plot shows the matrix more clearly:
spy (Hstr(1:20, 1:20))

Use optimset to set the HessPattern parameter to Hstr. When a problem as large as this has obvious sparsity structure, not setting the HessPattern parameter requires a huge amount of unnecessary memory and computation. This is because fmincon attempts to use finite differencing on a full Hessian matrix of 640,000 nonzero entries.

You must also set the GradObj parameter to ' on ' using optimset, since the gradient is computed in tbroyfg.m. Then execute fmincon as shown in Step 2.

Step 2: Call a nonlinear minimization routine with a starting point xstart.

```
fun = @tbroyfg;
load tbroyhstr % Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimset('GradObj','on','HessPattern',Hstr);
[x,fval,exitflag,output] = ...
    fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);
```

After seven iterations, the exitflag, fval, and output values are

```
exitflag =
            3
fval =
    270.4790
output =
            iterations: 7
                    funcCount: 8
            cgiterations: 18
        firstorderopt: 0.0163
            algorithm: 'large-scale: trust-region reflective Newton'
                    message: [1x86 char]
```

For bound constrained problems, the first-order optimality is the infinity norm of $v . * g$, where v is defined as in "Box Constraints" on page 4-10, and g is the gradient.

Because of the five-banded center stripe, you can improve the solution by using a five-banded preconditioner instead of the default diagonal preconditioner. Using the optimset function, reset the PrecondBandWidth parameter to 2 and solve the problem again. (The bandwidth is the number of upper (or lower) diagonals, not counting the main diagonal.)

```
fun = @tbroyfg;
load tbroyhstr %Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n,1) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimset('GradObj','on','HessPattern',Hstr, ...
    'PrecondBandWidth',2);
[x,fval,exitflag,output] = ...
    fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);
```

The number of iterations actually goes up by two; however the total number of CG iterations drops from 18 to 15 . The first-order optimality measure is reduced by a factor of $1 \mathrm{e}-3$:

```
exitflag =
    3
fval =
    270.4790
output =
    iterations: 9
        funcCount: 10
        cgiterations: 15
        firstorderopt: 7.5340e-005
            algorithm: 'large-scale: trust-region reflective Newton'
            message: [1x86 char]
```


Nonlinear Minimization with Equality Constraints

The large-scale method for fmincon can handle equality constraints if no other constraints exist. Suppose you want to minimize the same objective as in Equation 2-7, which is coded in the function brownfgh.m, where $\mathrm{n}=$ 1000, such that Aeq $\cdot x=$ beq for Aeq that has 100 equations (so Aeq is a 100-by-1000 matrix).

Step 1: Write an M-file brownfgh.m that computes the objective function, the gradient of the objective, and the sparse tridiagonal Hessian matrix.

As before, this file is rather long and is not included here. You can view the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the objective function, you need to use optimset to indicate that this information is available in brownfgh, using the GradObj and Hessian options.

The sparse matrix Aeq and vector beq are available in the file browneq.mat:

load browneq

The linear constraint system is 100-by-1000, has unstructured sparsity (use spy (Aeq) to view the sparsity structure), and is not too badly ill-conditioned:

```
condest(Aeq*Aeq')
ans =
    2.9310e+006
```


Step 2: Call a nonlinear minimization routine with a starting point xstart.

```
fun = @brownfgh;
load browneq % Get Aeq and beq, the linear equalities
n = 1000;
xstart = -ones(n,1); xstart(2:2:n) = 1;
options = optimset('GradObj','on','Hessian','on', ...
    'PrecondBandWidth', inf);
[x,fval,exitflag,output] = ...
    fmincon(fun,xstart,[],[],Aeq,beq,[],[],[],options);
```

Setting the option PrecondBandWidth to inf causes a sparse direct solver to be used instead of preconditioned conjugate gradients.

The exitflag value of 3 indicates that the algorithm terminated because the change in the objective function value was less than the specified tolerance TolFun. The final function value is given by fval.

```
exitflag =
    3
fval =
    205.9313
output =
        iterations: 16
            funcCount: 17
        cgiterations: 20
        firstorderopt: 7.3575e-005
            algorithm: 'large-scale: projected trust-region Newton'
                message: [1x86 char]
```

The linear equalities are satisfied at x.

```
norm(Aeq*x-beq)
ans =
    1.1885e-012
```


Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints

The fmincon and fminunc large-scale methods can solve problems where the Hessian is dense but structured. For these problems, fmincon and fminunc do not compute $H^{*} Y$ with the Hessian H directly, as they do for medium-scale problems and for large-scale problems with sparse H, because forming H would be memory-intensive. Instead, you must provide fmincon or fminunc with a function that, given a matrix Y and information about H, computes $W=H^{*} Y$.

In this example, the objective function is nonlinear and linear equalities exist so fmincon is used. The objective function has the structure

$$
f(x)=\hat{f}(x)-\frac{1}{2} x^{T} V V^{T} x
$$

where V is a 1000 -by- 2 matrix. The Hessian of f is dense, but the Hessian of \hat{f} is sparse. If the Hessian of \hat{f} is \hat{H}, then H, the Hessian of f, is

$$
H=\hat{H}-V V^{T}
$$

To avoid excessive memory usage that could happen by working with H directly, the example provides a Hessian multiply function, hmfleq1. This function, when passed a matrix Y, uses sparse matrices Hinfo, which corresponds to H, and \vee to compute the Hessian matrix product

$$
W=H^{*} Y=(H i n f o-V * V ') * Y
$$

In this example, the Hessian multiply function needs \hat{H} and \vee to compute the Hessian matrix product. V is a constant, so you can capture V in a function handle to an anonymous function.

However, \hat{H} is not a constant and must be computed at the current x. You can do this by computing \hat{H} in the objective function and returning \hat{H} as Hinfo in the third output argument. By using optimset to set the 'Hessian' options to ' on ', fmincon knows to get the Hinfo value from the objective function and pass it to the Hessian multiply function hmfleq1.

Step 1: Write an M-file brownvv.m that computes the objective function, the gradient, and the sparse part of the Hessian.

The example passes brownvv to fmincon as the objective function. The brownvv.m file is long and is not included here. You can view the code with the command

type brownvv

Because brownvv computes the gradient and part of the Hessian as well as the objective function, the example (Step 3) uses optimset to set the GradObj and Hessian options to 'on'.

Step 2: Write a function to compute Hessian-matrix products for \mathbf{H} given a matrix \mathbf{Y}.

Now, define a function hmfleq1 that uses Hinfo, which is computed in brownvv, and V, which you can capture in a function handle to an anonymous function, to compute the Hessian matrix product W where $\mathrm{W}=\mathrm{H}^{*} \mathrm{Y}=\left(\right.$ Hinfo $\left.-\mathrm{V} * \mathrm{~V}^{\prime}\right) * Y$. This function must have the form

```
W = hmfleq1(Hinfo,Y)
```

The first argument must be the same as the third argument returned by the objective function brownvv. The second argument to the Hessian multiply function is the matrix Y (of $W=H^{*} Y$).

Because fmincon expects the second argument Y to be used to form the Hessian matrix product, Y is always a matrix with n rows where n is the number of dimensions in the problem. The number of columns in Y can vary. Finally, you can use a function handle to an anonymous function to capture V, so V can be the third argument to 'hmfleqq'.

```
function W = hmfleq1(Hinfo,Y,V);
%HMFLEQ1 Hessian-matrix product function for BROWNVV objective.
% W = hmfleq1(Hinfo,Y,V) computes W = (Hinfo-V*V')*Y
% where Hinfo is a sparse matrix computed by BROWNVV
% and V is a 2 column matrix.
W = Hinfo*Y - V*(V'*Y);
```

Note The function hmfleq1 is available in the Optimization Toolbox as the M-file hmfleq1.m.

Step 3: Call a nonlinear minimization routine with a starting point and linear equality constraints.

Load the problem parameter, V , and the sparse equality constraint matrices, Aeq and beq, from fleq1.mat, which is available in the Optimization Toolbox. Use optimset to set the GradObj and Hessian options to 'on' and to set the HessMult option to a function handle that points to hmfleq1. Call fmincon with objective function brownvv and with V as an additional parameter:

```
function [fval, exitflag, output, x] = runfleq1
```

```
% RUNFLEQ1 demonstrates 'HessMult' option for FMINCON with linear
% equalities.
% Copyright 1984-2004 The MathWorks, Inc.
% $Revision: 1.1.4.28.2.4 $ $Date: 2006/08/23 20:10:07 $
problem = load('fleq1'); % Get V, Aeq, beq
V = problem.V; Aeq = problem.Aeq; beq = problem.beq;
n = 1000; % problem dimension
xstart = -ones(n,1); xstart(2:2:n,1) = ones(length(2:2:n),1);
% starting point
options = optimset('GradObj','on','Hessian','on','HessMult',...
@(Hinfo,Y)hmfleq1(Hinfo,Y,V) ,'Display','iter','TolFun',1e-9);
[x,fval,exitflag,output] = fmincon(@(x)brownvv(x,V),\ldots
xstart,[],[],Aeq,beq,[],[], [],options);
```

Note Type [fval, exitflag, output, x] = runfleq1; to run the preceding code. This command displays the values for fval, exitflag, and output, as well as the following iterative display.

Because the iterative display was set using optimset, the results displayed are

| Iteration | $\mathrm{f}(\mathrm{x})$ | Norm of step | First-order optimality | CG-iterations |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1997.07 | 1 | 555 | 0 |
| 2 | 1072.56 | 6.31716 | 377 | 1 |
| 3 | 480.232 | 8.19554 | 159 | 2 |
| 4 | 136.861 | 10.3015 | 59.5 | 2 |
| 5 | 44.3708 | 9.04697 | 16.3 | 2 |
| 6 | 44.3708 | 100 | 16.3 | 2 |
| 7 | 44.3708 | 25 | 16.3 | 0 |
| 8 | -8.90967 | 6.25 | 28.5 | 0 |
| 9 | -318.486 | 12.5 | 107 | 1 |
| 10 | -318.486 | 12.5 | 107 | 1 |
| 11 | -415.445 | 3.125 | 73.9 | 0 |
| 12 | -561.688 | 3.125 | 47.4 | 2 |
| 13 | -785.326 | 6.25 | 126 | 3 |

| 14 | -785.326 | 4.30584 | 126 | 5 |
| :---: | ---: | ---: | ---: | :--- |
| 15 | -804.414 | 1.07646 | 26.9 | 0 |
| 16 | -822.399 | 2.16965 | 2.8 | 3 |
| 17 | -823.173 | 0.40754 | 1.34 | 3 |
| 18 | -823.241 | 0.154885 | 0.555 | 3 |
| 19 | -823.246 | 0.0518407 | 0.214 | 5 |
| 20 | -823.246 | 0.00977601 | 0.00724 | 6 |
| Optimization terminated successfully:
 Relative function value changing by less than | | | | |

Convergence is rapid for a problem of this size with the PCG iteration cost increasing modestly as the optimization progresses. Feasibility of the equality constraints is maintained at the solution

```
norm(Aeq*x-beq)
ans =
```

$1.9854 e-013$

Preconditioning

In this example, fmincon cannot use H to compute a preconditioner because H only exists implicitly. Instead of H , fmincon uses Hinfo, the third argument returned by brownvv, to compute a preconditioner. Hinfo is a good choice because it is the same size as H and approximates H to some degree. If Hinfo were not the same size as H , fmincon would compute a preconditioner based on some diagonal scaling matrices determined from the algorithm. Typically, this would not perform as well.

Quadratic Minimization with Bound Constraints

To minimize a large-scale quadratic with upper and lower bounds, you can use the quadprog function.

The problem stored in the MAT-file qpbox1.mat is a positive definite quadratic, and the Hessian matrix H is tridiagonal, subject to upper (ub) and lower (lb) bounds.

Step 1: Load the Hessian and define $\mathbf{f}, \mathbf{l b}$, and $\mathbf{u b}$.

```
load qpbox1 % Get H
lb = zeros(400,1); lb(400) = -inf;
ub = 0.9*ones(400,1); ub(400) = inf;
f = zeros(400,1); f([1 400]) = -2;
```


Step 2: Call a quadratic minimization routine with a starting point xstart.

```
xstart = 0.5*ones(400,1);
[x,fval,exitflag,output] = ...
    quadprog(H,f,[],[],[],[],lb,ub,xstart);
```

Looking at the resulting values of exitflag and output,

```
exitflag =
    3
output =
            iterations: 20
            algorithm: 'large-scale: reflective trust-region'
    firstorderopt: 9.6206e-006
    cgiterations: 1834
            message: [1x206 char]
```

you can see that while convergence occurred in 20 iterations, the high number of CG iterations indicates that the cost of the linear system solve is high. In light of this cost, one strategy would be to limit the number of CG iterations per optimization iteration. The default number is the dimension of the problem divided by two, 200 for this problem. Suppose you limit it to 50 using the MaxPCGIter flag in options:

```
options = optimset('MaxPCGIter',50);
[x,fval,exitflag,output] = ...
    quadprog(H,f,[],[],[],[],lb,ub,xstart,options);
```

This time convergence still occurs and the total number of CG iterations (1547) has dropped:

```
exitflag =
    3
```

```
output =
    iterations: 36
    algorithm: 'large-scale: reflective trust-region'
firstorderopt: 2.3821e-005
    cgiterations: 1547
            message: [1x206 char]
```

A second strategy would be to use a direct solver at each iteration by setting the PrecondBandWidth option to inf:

```
options = optimset('PrecondBandWidth',inf);
[x,fval,exitflag,output] = ...
    quadprog(H,f,[],[],[],[],lb,ub,xstart,options);
```

Now the number of iterations has dropped to 10 :

```
exitflag =
    3
output =
            iterations: 10
            algorithm: 'large-scale: reflective trust-region'
    firstorderopt: 1.2319e-006
    cgiterations: 9
            message: [1x206 char]
```

Using a direct solve at each iteration usually causes the number of iterations to decrease, but often takes more time per iteration. For this problem, the tradeoff is beneficial, as the time for quadprog to solve the problem decreases by a factor of 10 .

Quadratic Minimization with a Dense but Structured Hessian

The quadprog large-scale method can also solve large problems where the Hessian is dense but structured. For these problems, quadprog does not compute $H^{*} Y$ with the Hessian H directly, as it does for medium-scale problems and for large-scale problems with sparse H, because forming H would be memory-intensive. Instead, you must provide quadprog with a function that, given a matrix Y and information about H, computes $W=H^{*} Y$.

In this example, the Hessian matrix H has the structure $H=B+A^{*} A^{\prime}$ where B is a sparse 512 -by- 512 symmetric matrix, and A is a 512 -by- 10 sparse matrix composed of a number of dense columns. To avoid excessive memory usage that could happen by working with H directly because H is dense, the example provides a Hessian multiply function, qpbox4mult. This function, when passed a matrix Y, uses sparse matrices A and B to compute the Hessian matrix product $W=H^{*} Y=\left(B+A^{*} A^{\prime}\right) * Y$.

In this example, the matrices A and B need to be provided to the Hessian multiply function qpbox4mult. You can pass one matrix as the first argument to quadprog, which is passed to the Hessian multiply function. You can use a nested function to provide the value of the second matrix.

Step 1: Decide what part of H to pass to quadprog as the first argument.

Either A, or B can be passed as the first argument to quadprog. The example chooses to pass B as the first argument because this results in a better preconditioner (see "Preconditioning" on page 2-70).

```
quadprog(B,f,[],[],[],[],l,u,xstart,options)
```


Step 2: Write a function to compute Hessian-matrix products for H .

Now, define a function rungpbox4t that

- Contains a nested function qpbox4mult that uses A and B to compute the Hessian matrix product W, where $W=H * Y=\left(B+A^{*} A^{\prime}\right) * Y$. The nested function must have the form

```
W = qpbox4mult(Hinfo,Y,...)
```

The first two arguments Hinfo and Y are required.

- Loads the problem parameters from qpbox4.mat.
- Uses optimset to set the HessMult option to a function handle that points to qpbox4mult.
- Calls quadprog with B as the first argument.

The first argument to the nested function qpbox4mult must be the same as the first argument passed to quadprog, which in this case is the matrix B .

The second argument to qpbox4mult is the matrix Y (of $W=H * Y$). Because quadprog expects Y to be used to form the Hessian matrix product, Y is always a matrix with n rows, where n is the number of dimensions in the problem. The number of columns in Y can vary. The function qpbox4mult is nested so that the value of the matrix A comes from the outer function.

```
function [fval, exitflag, output, x] = runqpbox4
% RUNQPBOX4 demonstrates 'HessMult' option for QUADPROG with
% bounds.
problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested
% subfunction
% Choose the HessMult option
options = optimset('HessMult',mtxmpy);
% Pass B to qpbox4mult via the Hinfo argument. Also, B will be
% used in computing a preconditioner for PCG.
[x, fval, exitflag, output] = ...
quadprog(B,f,[],[],[],[],l,u,xstart,options);
function W = qpbox4mult(B,Y);
    %QPBOX4MULT Hessian matrix product with dense
    %structured Hessian.
    % W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
    % INPUT:
    % B - sparse square matrix (512 by 512)
    % Y - vector (or matrix) to be multiplied by
    % B + A'*A.
    % VARIABLES from outer function runqpbox4:
    % A - sparse matrix with 512 rows and 10 columns.
    %
    % OUTPUT:
    % W - The product (B + A*A')*Y.
```

```
        %
    % Order multiplies to avoid forming A*A',
    % which is large and dense
    W = B*Y + A*(A'*Y);
    end
end
```


Step 3: Call a quadratic minimization routine with a starting point.

To call the quadratic minimizing routine contained in runqpbox4, enter

```
[fval,exitflag,output] = runqpbox4
```

to run the preceding code and display the values for fval, exitflag, and output. The results are

```
Optimization terminated: relative function value changing by less
    than sqrt(OPTIONS.TolFun), no negative curvature detected in
current
    trust region model and the rate of progress (change in f(x)) is
slow.
fval =
    -1.0538e+003
exitflag =
    3
output =
    iterations: 18
        algorithm: 'large-scale: reflective trust-region'
    firstorderopt: 0.0028
    cgiterations: 50
```

```
message: [1x206 char]
```

After 18 iterations with a total of 30 PCG iterations, the function value is reduced to

```
fval =
    -1.0538e+003
```

and the first-order optimality is

```
output.firstorderopt =
    0.0043
```


Preconditioning

In this example, quadprog cannot use H to compute a preconditioner because H only exists implicitly. Instead, quadprog uses B, the argument passed in instead of H , to compute a preconditioner. B is a good choice because it is the same size as H and approximates H to some degree. If B were not the same size as H , quadprog would compute a preconditioner based on some diagonal scaling matrices determined from the algorithm. Typically, this would not perform as well.

Because the preconditioner is more approximate than when H is available explicitly, adjusting the TolPcg parameter to a somewhat smaller value might be required. This example is the same as the previous one, but reduces TolPcg from the default 0.1 to 0.01 .

```
function [fval, exitflag, output, x] = runqpbox4prec
% RUNQPBOX4PREC demonstrates 'HessMult' option for QUADPROG with
bounds.
problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested
subfunction
% Choose the HessMult option
% Override the TolPCG option
options = optimset('HessMult',mtxmpy,'TolPcg',0.01);
```

```
% Pass B to qpbox4mult via the H argument. Also, B will be used in
% computing a preconditioner for PCG.
% A is passed as an additional argument after 'options'
[x, fval, exitflag, output] =
quadprog(B,f,[],[],[],[],l,u,xstart,options);
    function W = qpbox4mult(B,Y);
    %QPBOX4MULT Hessian matrix product with dense structured
    %Hessian.
    % W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
    % INPUT:
    % B - sparse square matrix (512 by 512)
    % Y - vector (or matrix) to be multiplied by B + A'*A.
    % VARIABLES from outer function runqpbox4:
    % A - sparse matrix with }512\mathrm{ rows and 10 columns.
    %
    % OUTPUT:
            W - The product (B + A*A')*Y.
    %
    % Order multiplies to avoid forming A*A',
    % which is large and dense
    W = B*Y + A* (A'*Y);
    end
end
```

Now, enter
[fval,exitflag,output] = runqpbox4prec
to run the preceding code. After 18 iterations and 50 PCG iterations, the function value has the same value to five significant digits

```
fval =
-1.0538e+003
```

but the first-order optimality is further reduced.

```
output.firstorderopt =
0.0028
```

Note Decreasing TolPcg too much can substantially increase the number of PCG iterations.

Linear Least-Squares with Bound Constraints

Many situations give rise to sparse linear least-squares problems, often with bounds on the variables. The next problem requires that the variables be nonnegative. This problem comes from fitting a function approximation to a piecewise linear spline. Specifically, particles are scattered on the unit square. The function to be approximated is evaluated at these points, and a piecewise linear spline approximation is constructed under the condition that (linear) coefficients are not negative. There are 2000 equations to fit on 400 variables:

```
load particle % Get C, d
lb = zeros(400,1);
[x,resnorm,residual,exitflag,output] = ...
    lsqlin(C,d,[],[],[],[],lb);
```

The default diagonal preconditioning works fairly well:

```
exitflag =
    3
resnorm =
    22.5794
output =
    iterations: 10
        algorithm: 'large-scale: trust-region reflective Newton'
    firstorderopt: 2.7870e-005
    cgiterations: 42
            message: [1x123 char]
```

For bound constrained problems, the first-order optimality is the infinity norm of $v . * \mathrm{~g}$, where v is defined as in "Box Constraints" on page 4-10, and g is the gradient.

You can improve (decrease) the first-order optimality by using a sparse QR factorization in each iteration. To do this, set PrecondBandWidth to inf.

```
options = optimset('PrecondBandWidth',inf);
[x,resnorm,residual,exitflag,output] = ...
    lsqlin(C,d,[],[],[],[],lb,[],[],options);
```

The number of iterations and the first-order optimality both decrease:

```
exitflag =
    1
resnorm =
    22.5794
output =
    iterations: 12
        algorithm: 'large-scale: trust-region reflective Newton'
    firstorderopt: 5.5907e-015
    cgiterations: 11
        message: [1x104 char]
```


Linear Programming with Equalities and Inequalities

The problem is

$$
\begin{aligned}
& \min f^{T} x \quad \text { such that } \quad A \cdot x \leq b \\
& x \geq 0
\end{aligned}
$$

and you can load the matrices and vectors A, Aeq, b, beq, f, and the lower bounds lb into the MATLAB workspace with

```
load sc50b
```

This problem in sc50b.mat has 48 variables, 30 inequalities, and 20 equalities.
You can use linprog to solve the problem:

```
[x,fval,exitflag,output] = ...
    linprog(f,A,b,Aeq,beq,lb,[],[],optimset('Display','iter'));
```

Because the iterative display was set using optimset, the results displayed are

| Residuals: | | Primal
 Infeas $A * x-b$ | $\begin{gathered} \text { Dual } \\ \text { Infeas } \\ A^{\prime}{ }^{*} y+z-f \end{gathered}$ | Duality Gap x'*z | Total
 Rel
 Error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Iter | 0 : | 1.50e+003 | $2.19 \mathrm{e}+001$ | $1.91 \mathrm{e}+004$ | $1.00 \mathrm{e}+002$ |
| Iter | 1: | $1.15 \mathrm{e}+002$ | 3.18e-015 | $3.62 \mathrm{e}+003$ | 9.90e-001 |
| Iter | 2: | 8.32e-013 | 1.96e-015 | $4.32 \mathrm{e}+002$ | 9.48e-001 |
| Iter | $3:$ | 3.47e-012 | 7.49e-015 | $7.78 \mathrm{e}+001$ | 6.88e-001 |
| Iter | 4: | 5.66e-011 | 1.16e-015 | $2.38 \mathrm{e}+001$ | 2.69e-001 |
| Iter | 5: | 1.13e-010 | 3.67e-015 | $5.05 \mathrm{e}+000$ | 6.89e-002 |
| Iter | 6: | 5.03e-011 | 1.21e-016 | 1.64e-001 | $2.34 \mathrm{e}-003$ |
| Iter | 7: | 5.75e-012 | 1.12e-016 | 1.09e-005 | 1.55e-007 |
| Iter | 8: | 8.08e-014 | 5.67e-013 | 1.09e-011 | 3.82e-012 |

For this problem, the large-scale linear programming algorithm quickly reduces the scaled residuals below the default tolerance of $1 \mathrm{e}-08$.

The exitflag value is positive, telling you linprog converged. You can also get the final function value in fval and the number of iterations in output.iterations:

```
exitflag =
    1
fval =
    -70.0000
output =
    iterations: 8
            algorithm: 'large-scale: interior point'
        cgiterations: 0
            message: 'Optimization terminated.
```


Linear Programming with Dense Columns in the Equalities

The problem is
and you can load the matrices and vectors Aeq, beq, $f, l b$, and ub into the MATLAB workspace with
load densecolumns

The problem in densecolumns.mat has 1677 variables and 627 equalities with lower bounds on all the variables, and upper bounds on 399 of the variables. The equality matrix Aeq has dense columns among its first 25 columns, which is easy to see with a spy plot:

You can use linprog to solve the problem:

```
[x,fval,exitflag,output] = ...
    linprog(f,[],[],Aeq,beq,lb,ub,[],optimset('Display','iter'));
```

Because the iterative display was set using optimset, the results displayed are

| Residuals: | Primal | Dual | Upper | Duality | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Infeas | Infeas | Bounds | Gap | Rel |
| | $A^{*} x-b$ | $A^{\prime *} y+z-w-f$ | $\{x\}+s-u b$ | $x^{\prime *} z+s^{\prime *} w$ | Error |

| Iter | $0:$ | $1.67 \mathrm{e}+003$ | $8.11 \mathrm{e}+002$ | $1.35 \mathrm{e}+003$ | $5.30 \mathrm{e}+006$ | $2.92 \mathrm{e}+001$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Iter | $1:$ | $1.37 \mathrm{e}+002$ | $1.33 \mathrm{e}+002$ | $1.11 \mathrm{e}+002$ | $1.27 \mathrm{e}+006$ | $2.48 \mathrm{e}+000$ |
| Iter | $2:$ | $3.56 \mathrm{e}+001$ | $2.38 \mathrm{e}+001$ | $2.89 \mathrm{e}+001$ | $3.42 \mathrm{e}+005$ | $1.99 \mathrm{e}+000$ |
| Iter | $3:$ | $4.86 \mathrm{e}+000$ | $8.88 \mathrm{e}+000$ | $3.94 \mathrm{e}+000$ | $1.40 \mathrm{e}+005$ | $1.89 \mathrm{e}+000$ |
| Iter | $4:$ | $4.24 \mathrm{e}-001$ | $5.89 \mathrm{e}-001$ | $3.44 \mathrm{e}-001$ | $1.91 \mathrm{e}+004$ | $8.41 \mathrm{e}-001$ |
| Iter | $5:$ | $1.23 \mathrm{e}-001$ | $2.02 \mathrm{e}-001$ | $9.97 \mathrm{e}-002$ | $8.41 \mathrm{e}+003$ | $5.79 \mathrm{e}-001$ |
| Iter | $6:$ | $3.98 \mathrm{e}-002$ | $7.91 \mathrm{e}-002$ | $3.23 \mathrm{e}-002$ | $4.05 \mathrm{e}+003$ | $3.52 \mathrm{e}-001$ |
| Iter | $7:$ | $7.25 \mathrm{e}-003$ | $3.83 \mathrm{e}-002$ | $5.88 \mathrm{e}-003$ | $1.85 \mathrm{e}+003$ | $1.85 \mathrm{e}-001$ |
| Iter | $8:$ | $1.47 \mathrm{e}-003$ | $1.34 \mathrm{e}-002$ | $1.19 \mathrm{e}-003$ | $8.12 \mathrm{e}+002$ | $8.52 \mathrm{e}-002$ |
| Iter | $9:$ | $2.52 \mathrm{e}-004$ | $3.39 \mathrm{e}-003$ | $2.04 \mathrm{e}-004$ | $2.78 \mathrm{e}+002$ | $2.99 \mathrm{e}-002$ |
| Iter | $10:$ | $3.46 \mathrm{e}-005$ | $1.08 \mathrm{e}-003$ | $2.81 \mathrm{e}-005$ | $1.09 \mathrm{e}+002$ | $1.18 \mathrm{e}-002$ |
| Iter | $11:$ | $6.97 \mathrm{e}-007$ | $3.23 \mathrm{e}-012$ | $5.64 \mathrm{e}-007$ | $1.48 \mathrm{e}+001$ | $1.62 \mathrm{e}-003$ |
| Iter | $12:$ | $5.10 \mathrm{e}-007$ | $3.25 \mathrm{e}-012$ | $3.18 \mathrm{e}-008$ | $8.32 \mathrm{e}-001$ | $9.09 \mathrm{e}-005$ |
| Iter | $13:$ | $5.06 \mathrm{e}-006$ | $1.43 \mathrm{e}-010$ | $3.86 \mathrm{e}-009$ | $7.26 \mathrm{e}-002$ | $7.94 \mathrm{e}-006$ |
| Iter | $14:$ | $2.15 \mathrm{e}-006$ | $2.17 \mathrm{e}-010$ | $6.53 \mathrm{e}-012$ | $1.11 \mathrm{e}-003$ | $1.21 \mathrm{e}-007$ |
| Iter | $15:$ | $7.34 \mathrm{e}-008$ | $2.33 \mathrm{e}-009$ | $3.38 \mathrm{e}-013$ | $8.62 \mathrm{e}-008$ | $1.29 \mathrm{e}-009$ |
| Optimization | terminated. | | | | | |

You can see the returned values of exitflag, fval, and output:

```
exitflag =
    1
fval =
    9.1464e+003
output =
        iterations: 15
        algorithm: 'large-scale: interior point'
        cgiterations: 208
            message: 'Optimization terminated.'
```

This time the number of PCG iterations (in output.cgiterations) is nonzero because the dense columns in Aeq are detected. Instead of using a sparse Cholesky factorization, linprog tries to use the Sherman-Morrison formula to solve a linear system involving Aeq*Aeq'. If the Sherman-Morrison formula
does not give a satisfactory residual, a PCG iteration is used. See "Main Algorithm" on page 4-15.

Default Options Settings

The options structure contains options used in the optimization routines. If, on the first call to an optimization routine, the options structure is not provided, or is empty, a set of default options is generated. Some of the default options values are calculated using factors based on problem size, such as MaxFunEvals. Some options are dependent on the specific optimization routines and are documented on those function reference pages (See "Main Algorithm" on page 4-15).
"Optimization Options" on page 6-8 provides an overview of all the options in the options structure.

Changing the Default Settings

The function optimset creates or updates an options structure to pass to the various optimization functions. The arguments to the optimset function are option name and option value pairs, such as TolX and 1e-4. Any unspecified properties have default values. You need to type only enough leading characters to define the option name uniquely. Case is ignored for option names. For option values that are strings, however, case and the exact string are necessary.
help optimset provides information that defines the different options and describes how to use them.

Here are some examples of the use of optimset.

Returning All Options

optimset returns all the options that can be set with typical values and default values.

Determining Options Used by a Function

The options structure defines the options that can be used by the functions provided by the toolbox. Because functions do not use all the options, it can be useful to find which options are used by a particular function.

To determine which options structure fields are used by a function, pass the name of the function (in this example, fmincon) to optimset.

```
    optimset('fmincon')
or
optimset fmincon
```

This statement returns a structure. Fields not used by the function have empty values ([]); fields used by the function are set to their default values for the given function.

Displaying Output

To display output at each iteration, enter

```
options = optimset('Display', 'iter');
```

This command sets the value of the Display option to 'iter', which causes the toolbox to display output at each iteration. You can also turn off any output display ('off'), display output only at termination ('final'), or display output only if the problem fails to converge ('notify').

Running Medium-Scale Optimization

For all functions that support medium- and large-scale optimization problems except fsolve, the default is for the function to use the large-scale algorithm. To use the medium-scale algorithm, enter

```
options = optimset('LargeScale', 'off');
```

For fsolve, the default is the medium-scale algorithm. To use the large-scale algorithm, enter

```
options = optimset('LargeScale', 'on');
```


Setting More Than One Option

You can specify multiple options with one call to optimset. For example, to reset the output option and the tolerance on x, enter

```
options = optimset('Display', 'iter', 'TolX', 1e-6);
```


Updating an options Structure

To update an existing options structure, call optimset and pass options as the first argument:

```
options = optimset(options, 'Display', 'iter', 'TolX', 1e-6);
```


Retrieving Option Values

Use the optimget function to get option values from an options structure. For example, to get the current display option, enter the following:

```
verbosity = optimget(options, 'Display');
```


Displaying Iterative Output

When you set 'Display' to 'iter' in options, the optimization functions display iterative output in the Command Window. This output, which provides information about the progress of the algorithm, is displayed in columns with descriptive headings. For example, if you run fminunc with 'Display' set to 'iter', the output headings are
Iteration Func-count $\quad f(x) \quad$ Gradient's

The following sections list the output headings and describe the information displayed below them:

- "Most Common Output Headings" on page 2-81
- "Function-Specific Output Headings" on page 2-82

Note An optimization function does not return all of the output headings, described in the following tables, each time you call it. Which output headings are returned depends on the algorithm the optimization function uses for a particular problem.

Most Common Output Headings

The following table lists some common output headings of iterative output.

| Output Heading | Information Displayed |
| :--- | :--- |
| Iteration or Iter | Iteration number |
| Func-count or
 F-count | Number of function evaluations |
| x | Current point for the algorithm |
| $f(x)$ | Current function value |
| Step - size | Step size in the current search direction |
| Norm of step | Norm of the current step |

Function-Specific Output Headings

The following sections describe output headings of iterative output whose meaning is specific to the optimization function you are using.

- "bintprog" on page 2-82
- "fminsearch" on page 2-83
- "fzero and fminbnd" on page 2-84
- "fminunc" on page 2-84
- "fsolve" on page 2-85
- "fgoalattain, fmincon, fminimax, and fseminf" on page 2-85
- "linprog" on page 2-86
- "lsqnonlin and lsqcurvefit" on page 2-87

bintprog

The following table describes the output headings specific to bintprog.

| bintprog
 Output
 Heading | Information Displayed |
| :--- | :--- |
| Explored
 nodes | Cumulative number of explored nodes |
| Obj of LP
 relaxation | Objective function value of the linear programming (LP)
 relaxation problem |
| Obj of best
 integer point | Objective function value of the best integer point found
 so far. This is an upper bound for the final objective
 function value. |
| Unexplored
 nodes | Number of nodes that have been set up but not yet
 explored |

$\left.\begin{array}{l|l}\hline \begin{array}{l}\text { bintprog } \\ \text { Output } \\ \text { Heading }\end{array} & \text { Information Displayed }\end{array} \begin{array}{l}\begin{array}{l}\text { Best lower } \\ \text { bound on obj }\end{array}\end{array} \begin{array}{l}\text { Objective function value of LP relaxation problem that } \\ \text { gives the best current lower bound on the final objective } \\ \text { function value }\end{array}\right]$

fminsearch

The following table describes the output headings specific to fminsearch.

| fminsearch
 Output
 Heading | Information Displayed |
| :--- | :--- |
| min $f(x)$ | Minimum function value in the current simplex |
| Procedure | Simplex procedure at the current iteration. Procedures
 include initial, expand, refleet, shrink, contract
 inside, and contract outside. |

fzero and fminbnd

The following table describes the output headings specific to fzero and fminbnd.

| fzero and fminbnd Output Heading | Information Displayed |
| :---: | :---: |
| Procedure | Procedure at the current operation. Procedures for fzero:
 - initial (initial point)
 - search (search for an interval containing a zero)
 - bisection (bisection search)
 - interpolation
 Operations for fminbnd:
 - initial
 - golden (golden section search)
 - parabolic (parabolic interpolation) |

fminunc

The following table describes the output headings specific to fminunc.

| fminunc
 Output
 Heading | Information Displayed |
| :--- | :--- |
| First-order
 optimality | Infinity norm of the current gradient |
| CG-iterations | Number of conjugate gradient iterations taken by the
 current (optimization) iteration (see "Preconditioned
 Conjugate Gradients" on page 4-7) |

fsolve

The following table describes the output headings specific to fsolve.

| fsolve Output
 Heading | Information Displayed |
| :--- | :--- |
| First-order
 optimality | Current violation of the optimality conditions |
| Trust-region
 radius | Current trust region radius (change in the norm of the
 trust-region radius) |
| Residual | Residual (sum of squares) of the function |
| Directional
 derivative | Gradient of the function along the search direction |

fgoalattain, fmincon, fminimax, and fseminf

The following table describes the output headings specific to fgoalattain, fmincon, fminimax, and fseminf.

| fgoalattain,
 fmincon,
 fminimax, fseminf
 Output Heading | Information Displayed |
| :--- | :--- |
| Max constraint | Maximum constraint violation |
| Max\{F, constraints\}\} | Maximum function value or constraint violation for
 fminimax |
| First-order
 optimality | Current violation of the optimality conditions |
| CG-iterations | Number of conjugate gradient iterations taken by the
 current (optimization) iteration (see "Preconditioned
 Conjugate Gradients" on page 4-7) |
| Trust-region
 radius | Current trust region radius |
| Residual | Residual (sum of squares) of the function |
| Attainment factor | Current value of γ in the goal attainment problem |

| fgoalattain,
 fmincon,
 fminimax, fseminf
 Output Heading | Information Displayed |
| :--- | :--- |
| Directional
 derivative | Current gradient of the function along the search
 direction |
| Procedure | Hessian update and QP subproblem. The Procedure
 messages are discussed in "Updating the Hessian
 Matrix" on page 3-33. |

linprog

The following table describes the output headings specific to linprog.

| linprog Output
 Heading | Information Displayed |
| :--- | :--- |
| Primal Infeas
 $A^{*} \mathrm{x}-\mathrm{b}$ | Primal infeasiblity |
| Dual Infeas
 $A^{\prime} * y+z-w-f$ | Dual infeasibility |
| Duality Gap
 x' *z+s' *w | Duality gap (see "Large-Scale Linear Programming" on
 page 4-15) between the primal objective and the dual
 objective. s and w appear only in this equation if there
 are finite upper bounds. |
| Total Rel
 Error | Total relative error, described at the end of "Main
 Algorithm" on page 4-15. |
| Objective f'*x | Current objective value |

Isqnonlin and Isqcurvefit

The following table describes the output headings specific to lsqnonlin and lsqcurvefit.

| Isqnonlin and
 Isqcurvefit
 Output
 Heading | Information Displayed |
| :--- | :--- |
| Resnorm | Value of the squared 2-norm of the residual at x |
| Residual | Residual vector of the function |
| First-order
 optimality | Current violation of the optimality conditions |
| CG-iterations | Number of conjugate gradient iterations taken by the
 current (optimization) iteration (see "Preconditioned
 Conjugate Gradients" on page 4-7) |
| Directional
 derivative | Gradient of the function along the search direction
 Lambdaλ_{k} value defined in "Least-Squares Optimization" on
 page 3-18. (This value is displayed when you use the
 Levenberg-Marquardt method and omitted when you
 use the Gauss-Newton method.) |

Calling an Output Function Iteratively

For some problems, you might want output from an optimization algorithm at each iteration. For example, you might want to find the sequence of points that the algorithm computes and plot those points. To do this, you can create an output function that the optimization function calls at each iteration. This section provides an example of an output function.

This section covers the following topics:

- "What the Example Does" on page 2-88
- "Output Function" on page 2-89
- "Creating the M-File for the Example" on page 2-90
- "Running the Example" on page 2-92

What the Example Does

The example in this section continues the one described in "Nonlinear Inequality Constrained Example" on page 2-12, which calls the function fmincon at the command line to solve a nonlinear, constrained optimization problem. However, the example in this section uses an M-file to call fmincon. The M-file also contains all the functions needed for the example, including

- The objective function
- The constraint function
- An output function that records the history of points computed by the algorithm for fmincon. At each iteration of the algorithm for fmincon, the output function
- Plots the current point computed by the algorithm
- Stores the point and its corresponding objective function value in a variable called history, and the current search direction in a variable called searchdir. The search direction is a vector that points in the direction from the current point to the next one.

You can see the code for the M-file in "Creating the M-File for the Example" on page 2-90.

Output Function

You specify the output function in the options structure as follows:

```
options = optimset('OutputFcn', @outfun)
```

where outfun is the name of the output function. When you call an optimization function with options as an input, the optimization function calls outfun at each iteration of its algorithm.

In general, outfun can be any MATLAB function, but in this example, it is a nested subfunction of the M-file described in "Creating the M-File for the Example" on page 2-90. The following code defines the output function:

```
function stop = outfun(x,optimValues,state)
stop = false;
    switch state
        case 'init'
            hold on
            case 'iter'
                % Concatenate current point and objective function
                % value with history. x must be a row vector.
                history.fval = [history.fval; optimValues.fval];
                history.x = [history.x; x];
                % Concatenate current search direction with
                % searchdir.
                searchdir = [searchdir; optimValues.searchdirection'];
            plot(x(1),x(2),'o');
            % Label points with iteration number.
            text(x(1)+.15,x(2),num2str(optimValues.iteration));
            case 'done'
            hold off
            otherwise
        end
end
```

See "Using Function Handles with Nested Functions" in the MATLAB Programming documentation for more information about nested functions.

The arguments that the optimization function passes to outfun are

- x - The point computed by the algorithm at the current iteration.
- optimValues - Structure containing data from the current iteration.

The example uses the following fields of optimValues:

- optimValues.iteration - Number of the current iteration
- optimValues.fval - Current objective function value
- optimValues.searchdirection - Current search direction
- state - The current state of the algorithm

For more information about these arguments, see "Output Function" on page 6-16.

Creating the M-File for the Example

To create the M-file for the example:
1 Open a new M-file in the MATLAB editor.
2 Copy and paste the following code into the M-file:

```
function [history,searchdir] = runfmincon
% Set up shared variables with OUTFUN
history.x = [];
history.fval = [];
searchdir = [];
% call optimization
x0 = [-1 1];
options = optimset('outputfcn',@outfun,'display','iter',...
'largescale','off');
xsol = fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);
    function stop = outfun(x,optimValues,state)
        stop = false;
```

```
        switch state
            case 'init'
                hold on
            case 'iter'
                % Concatenate current point and objective function
                    % value with history. x must be a row vector.
                    history.fval = [history.fval; optimValues.fval];
                    history.x = [history.x; x];
                % Concatenate current search direction with
                    % searchdir.
                    searchdir = [searchdir;...
                    optimValues.searchdirection'];
            plot(x(1),x(2),'o');
            % Label points with iteration number and add title.
            text(x(1)+.15,x(2),...
                    num2str(optimValues.iteration));
                title('Sequence of Points Computed by fmincon');
        case 'done'
            hold off
        otherwise
    end
    end
    function f = objfun(x)
    f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
    end
    function [c, ceq] = confun(x)
    % Nonlinear inequality constraints
    c = [1.5 + x(1)*x(2) - x(1) - x(2);
                -x(1)*x(2) - 10];
    % Nonlinear equality constraints
    ceq = [];
    end
end
```

3 Save the file as runfmincon.m in a directory on the MATLAB path.

Running the Example

To run the example, enter

```
[history searchdir] = runfmincon;
```

This displays the following iterative output in the Command Window.

| max | Directional | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Iter First-order | | | | | | |
| 0 | 3 | 1.8394 | 0.5 | | | |
| 1 | 7 | 1.85127 | -0.09197 | 1 | -0.027 | 0.778 |
| 2 | 11 | 0.300167 | 9.33 | 1 | -0.825 | 0.313 |
| 3 | 15 | 0.529835 | 0.9209 | 1 | 0.302 | 0.232 |
| 4 | 20 | 0.186965 | -1.517 | 0.5 | -0.437 | 0.13 |
| 5 | 24 | 0.0729085 | 0.3313 | 1 | -0.0715 | 0.054 |
| 6 | 28 | 0.0353323 | -0.03303 | 1 | -0.026 | 0.0271 |
| 7 | 32 | 0.0235566 | 0.003184 | 1 | -0.00963 | 0.00587 |
| 8 | 36 | 0.0235504 | $9.032 e-008$ | 1 | $-6.22 e-006$ | $8.51 e-007$ |

Optimization terminated: first-order optimality measure less
than options. TolFun and maximum constraint violation is less than options.TolCon.

Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin
1
2
The output history is a structure that contains two fields.

```
history
history =
    x: [9x2 double]
    fval: [9x1 double]
```

The fval field contains the objective function values corresponding to the sequence of points computed by fmincon.

```
history.fval
ans =
```

1.8394
1.8513
0.3002
0.5298
0.1870
0.0729
0.0353
0.0236
0.0236

Note that these are the same values that are displayed in the iterative output in the column under $f(x)$.

The x field of history contains the sequence of points computed by the algorithm.

```
history.x
ans =
    -1.0000 1.0000
    -1.3679 1.2500
    -5.5708 3.4699
    -4.8000 2.2752
    -6.7054 1.2618
    -8.0679 1.0186
    -9.0230 1.0532
    -9.5471 1.0471
    -9.5474 1.0474
```

The example displays a plot of this sequence of points, in which each point is labeled by its iteration number.

The optimal point occurs at the eighth iteration. Note that the last two points in the sequence are so close that they overlap.

The second output argument, searchdir, contains the search directions for fmincon at each iteration. The search direction is a vector pointing from the point computed at the current iteration to the point computed at the next iteration.

```
searchdir
searchdir =
\begin{tabular}{rr}
-0.3679 & 0.2500 \\
-4.2029 & 2.2199 \\
0.7708 & -1.1947 \\
-3.8108 & -2.0268 \\
-1.3625 & -0.2432 \\
-0.9552 & 0.0346 \\
-0.5241 & -0.0061 \\
-0.0003 & 0.0003
\end{tabular}
```


Optimizing Anonymous Functions Instead of M-Files

The routines in the Optimization Toolbox also perform optimization on anonymous functions, as well as functions defined by M-files.

To represent a mathematical function at the command line, create an anonymous function from a string expression. For example, you can create an anonymous version of the humps function (use the command type humps to see the M-file function humps.m):

```
fh = @(x)1./((x-0.3).^2 + 0.01) + 1./((x-0.9).^2 + 0.04)-6;
```

The constructor for an anonymous function returns a function handle, shown as fh above, that you can use in calling the function. Use the usual MATLAB function calling syntax to call a function by means of its function handle.

Evaluate the anonymous function at 2.0:

```
fh(2.0)
ans =
    -4.8552
```

You can also pass handle fh to an optimization routine to minimize it:

```
x = fminbnd(fh, 3, 4)
```

You can create anonymous functions of more than one argument. For example, to use lsqcurvefit, you first need a function that takes two input arguments, x and xdata,

```
fh = @(x,xdata)sin(x).*xdata +(x.^2).*cos(xdata);
x = pi; xdata = pi*[4;2;3];
fh(x, xdata)
ans =
```

 9.8696
 9.8696
 -9. 8696
 and you then call lsqcurvefit.

```
% Assume ydata exists
x = lsqcurvefit(fh,x,xdata,ydata)
```


Other Examples That Use this Technique

A Matrix Equation

$$
x=\text { fsolve }\left(@(x) x^{*} x^{*} x-[1,2 ; 3,4] \text {, ones }(2,2)\right)
$$

A Nonlinear Least-Squares Problem

```
x = lsqnonlin(@(x) x*x-[3 5;9 10],eye(2,2))
```


Passing Additional Arguments

An example using fgoalattain where the function has additional arguments to pass to the optimization routine. For example, if the function to be minimized has additional arguments A, B, and C ,

```
A = [-0.5 0 0; 0 -2 10; 0 1 -2];
B = [1 0; -2 2; 0 1];
C = [1 0 0; 0 0 1];
```

```
fun = @(x)sort(eig(A+B*x*C));
x = fgoalattain(fun,-ones(2,2),[-5,-3,-1],[5, 3, 1],...
[ ],[ ],[ ],[ ],-4*ones(2),4*ones(2));
```

solves the problem described on the fgoalattain reference page.

Typical Problems and How to Deal with Them

Optimization problems can take many iterations to converge and can be sensitive to numerical problems such as truncation and round-off error in the calculation of finite-difference gradients. Most optimization problems benefit from good starting guesses. This improves the execution efficiency and can help locate the global minimum instead of a local minimum.

Advanced problems are best solved by an evolutionary approach, whereby a problem with a smaller number of independent variables is solved first. You can generally use solutions from lower order problems as starting points for higher order problems by using an appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the early stages of an optimization problem can also reduce computation time. Such an approach often produces superior results by avoiding local minima.

The Optimization Toolbox functions can be applied to a large variety of problems. Used with a little "conventional wisdom," you can overcome many of the limitations associated with optimization techniques. Additionally, you can handle problems that are not typically in the standard form by using an appropriate transformation. Below is a list of typical problems and recommendations for dealing with them.

Troubleshooting

| Problem | Recommendation |
| :--- | :--- |
| The solution does not
 appear to be a global
 minimum. | There is no guarantee that you have a global minimum unless your
 problem is continuous and has only one minimum. Starting the
 optimization from a number of different starting points can help to
 locate the global minimum or verify that there is only one minimum.
 Use different methods, where possible, to verify results. |

Troubleshooting (Continued)

| Problem | Recommendation |
| :--- | :--- |
| fminunc produces
 warning messages and
 seems to exhibit slow
 convergence near the
 solution. | If you are not supplying analytically determined gradients and the
 termination criteria are stringent, fminunc often exhibits slow
 convergence near the solution due to truncation error in the gradient
 calculation. Relaxing the termination criteria produces faster,
 although less accurate, solutions. For the medium-scale algorithm,
 another option is adjusting the finite-difference perturbation levels,
 DiffMinChange and DiffMaxChange, which might increase the
 accuracy of gradient calculations. |
| Sometimes an
 optimization problem
 has values of x for
 which it is impossible to
 evaluate the objective
 function fun or the
 nonlinear constraints
 function nonlcon. | Place bounds on the independent variables or make a penalty
 function to give a large positive value to f and g when infeasibility is
 encountered. For gradient calculation, the penalty function should be
 smooth and continuous. |
| The function that is
 being minimized has
 discontinuities. | The derivation of the underlying method is based upon functions
 with continuous first and second derivatives. Some success might
 be achieved for some classes of discontinuities when they do not
 occur near solution points. One option is to smooth the function.
 For example, the objective function might include a call to an
 interpolation function to do the smoothing.
 Or, for the medium-scale algorithms, you can adjust the |
| finite-difference parameters in order to jump over small | |
| discontinuities. The variables DiffMinChange and DiffMaxChange | |
| control the perturbation levels for x used in the calculation of | |
| finite-difference gradients. The perturbation, $\Delta x, ~ i s ~ a l w a y s ~ i n ~ t h e ~$ | |
| range DiffMinChange < Dx < DiffMaxChange. | |

Troubleshooting (Continued)

$\left.\left.\left.\begin{array}{l|l}\hline \text { Problem } & \text { Recommendation } \\ \hline \begin{array}{l}\text { Warning messages are } \\ \text { displayed. }\end{array} & \begin{array}{l}\text { This sometimes occurs when termination criteria are overly stringent, } \\ \text { or when the problem is particularly sensitive to changes in the } \\ \text { independent variables. This usually indicates truncation or round-off } \\ \text { errors in the finite-difference gradient calculation, or problems in } \\ \text { the polynomial interpolation routines. These warnings can usually } \\ \text { be ignored because the routines continue to make steps toward the } \\ \text { solution point; however, they are often an indication that convergence } \\ \text { will take longer than normal. Scaling can sometimes improve the } \\ \text { sensitivity of a problem. }\end{array} \\ \hline \begin{array}{l}\text { The independent } \\ \text { variables, } x, \text { can only } \\ \text { take on discrete values, } \\ \text { for example, integers. }\end{array} & \begin{array}{l}\text { This type of problem commonly occurs when, for example, the } \\ \text { variables are the coefficients of a filter that are realized using } \\ \text { finite-precision arithmetic or when the independent variables } \\ \text { represent materials that are manufactured only in standard amounts. }\end{array} \\ \text { Although the Optimization Toolbox functions are not explicitly set } \\ \text { up to solve discrete problems, you can solve some discrete problems } \\ \text { by first solving an equivalent continuous problem. Do this by } \\ \text { progressively eliminating discrete variables from the independent } \\ \text { variables, which are free to vary. }\end{array}\right\} \begin{array}{l}\text { Eliminate a discrete variable by rounding it up or down to the nearest } \\ \text { best discrete value. After eliminating a discrete variable, solve a } \\ \text { reduced order problem for the remaining free variables. Having } \\ \text { found the solution to the reduced order problem, eliminate another } \\ \text { discrete variable and repeat the cycle until all the discrete variables } \\ \text { have been eliminated. }\end{array}\right\} \begin{array}{l}\text { dfildemo is a demonstration routine that shows how filters with } \\ \text { fixed-precision coefficients can be designed using this technique. } \\ \text { (From the MATLAB Help browser or the MathWorks Web site } \\ \text { documentation, you can click the demo name to display the demo.) }\end{array}\right\}$

Troubleshooting (Continued)

| Problem | Recommendation |
| :--- | :--- |
| The minimization
 routine appears to
 enter an infinite loop
 or returns a solution
 that does not satisfy the
 problem constraints. | Your objective (fun), constraint (nonlcon, seminfcon), or gradient
 (computed by fun) functions might be returning Inf, NaN, or complex
 values. The minimization routines expect only real numbers to be
 returned. Any other values can cause unexpected results. Insert
 some checking code into the user-supplied functions to verify that
 only real numbers are returned (use the function isfinite). |
| You do not get the
 convergence you expect
 from the lsqnonlin
 routine. | You might be forming the sum of squares explicitly and returning
 a scalar value. lsqnonlin expects a vector (or matrix) of function
 values that are squared and summed internally. |

Selected Bibliography

[1] Hairer, E., S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I - Nonstiff Problems, Springer-Verlag, pp. 183-184.

Standard Algorithms

Standard Algorithms provides an introduction to the different optimization problem formulations, and describes the medium-scale (i.e., standard) algorithms used in the toolbox functions. These algorithms have been chosen for their robustness and iterative efficiency. The choice of problem formulation (e.g., unconstrained, least-squares, constrained, minimax, multiobjective, or goal attainment) depends on the problem being considered and the required execution efficiency.

This chapter consists of these sections:
$\left.\begin{array}{ll}\text { Optimization Overview (p. 3-4) } & \begin{array}{l}\text { Introduces optimization as a way } \\ \text { of finding a set of parameters } \\ \text { that can be defined as optimal. } \\ \text { These parameters are obtained } \\ \text { by minimizing or maximizing an } \\ \text { objective function, subject to equality } \\ \text { or inequality constraints and/or } \\ \text { parameter bounds. }\end{array} \\ \text { Demos of Medium-Scale Methods } & \begin{array}{l}\text { Functions that demonstrate } \\ \text { medium-scale methods. }\end{array} \\ \text { (p. 3-5) } & \begin{array}{l}\text { Unconstrained Optimization (p. 3-6) }\end{array} \\ \begin{array}{l}\text { Discusses the use of quasi-Newton } \\ \text { and line search methods for }\end{array} \\ \text { unconstrained optimization. }\end{array}\right\}$
\(\left.$$
\begin{array}{ll}\text { Least-Squares Optimization (p. 3-18) } & \begin{array}{l}\text { Discusses the use of } \\
\text { the Gauss-Newton and }\end{array}
$$

\& Levenberg-Marquardt methods

for nonlinear least-squares

(LS) optimization. Also\end{array}\right]\)| provides implementation details |
| :--- |
| for the Gauss-Newton and |
| |
| Levenberg-Marquardt methods |
| used in the nonlinear least-squares |
| optimization routines, lsqnonlin |
| and lsqcurvefit. |

| Multiobjective Optimization (p. 3-43) | Introduces multiobjective
 optimization and discusses
 strategies for dealing with competing
 objectives. It discusses in detail the
 use of the goal attainment method,
 and suggests improvements to the |
| :--- | :--- |
| SQP method for use with the goal | |
| attainment method. | |

Note Medium-scale is not a standard term and is used here only to differentiate these algorithms from the large-scale algorithms described in Chapter 4, "Large-Scale Algorithms".

Optimization Overview

Optimization techniques are used to find a set of design parameters, $x=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, that can in some way be defined as optimal. In a simple case this might be the minimization or maximization of some system characteristic that is dependent on x. In a more advanced formulation the objective function, $f(x)$, to be minimized or maximized, might be subject to constraints in the form of equality constraints, $G_{i}(x)=0\left(i=1, \ldots, m_{e}\right)$; inequality constraints, $G_{i}(x) \leq 0\left(i=m_{e}+1, \ldots m\right)$; and/or parameter bounds, x_{l}, x_{u}

A General Problem (GP) description is stated as

$$
\begin{equation*}
\underset{x}{\operatorname{minimize}} f(x) \tag{3-1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
G_{i}(x)=0, & i=1, \ldots, m_{e} \\
G_{i}(x) \leq 0, & i=m_{e}+1, \ldots, m
\end{array}
$$

where x is the vector of length n design parameters, $f(x)$ is the objective function, which returns a scalar value, and the vector function $G(x)$ returns a vector of length m containing the values of the equality and inequality constraints evaluated at x.

An efficient and accurate solution to this problem depends not only on the size of the problem in terms of the number of constraints and design variables but also on characteristics of the objective function and constraints. When both the objective function and the constraints are linear functions of the design variable, the problem is known as a Linear Programming (LP) problem. Quadratic Programming (QP) concerns the minimization or maximization of a quadratic objective function that is linearly constrained. For both the LP and QP problems, reliable solution procedures are readily available. More difficult to solve is the Nonlinear Programming (NP) problem in which the objective function and constraints can be nonlinear functions of the design variables. A solution of the NP problem generally requires an iterative procedure to establish a direction of search at each major iteration. This is usually achieved by the solution of an LP, a QP, or an unconstrained subproblem.

Demos of Medium-Scale Methods

From the MATLAB Help browser or the MathWorks Web site documentation, click the demo name to display the demo.

| bandem | Minimization of banana function |
| :--- | :--- |
| datdemo | Fitting data to a curve |
| dfildemo | Finite-precision filter design (requires Signal
 Processing Toolbox) |
| goaldemo | Goal attainment example |
| officeassign | Binary integer programming to solve the office
 assignment problem |
| tutdemo | Script for medium-scale algorithms, following
 Chapter 2, "Tutorial" |

Unconstrained Optimization

Although a wide spectrum of methods exists for unconstrained optimization, methods can be broadly categorized in terms of the derivative information that is, or is not, used. Search methods that use only function evaluations (e.g., the simplex search of Nelder and Mead [32]) are most suitable for problems that are very nonlinear or have a number of discontinuities. Gradient methods are generally more efficient when the function to be minimized is continuous in its first derivative. Higher order methods, such as Newton's method, are only really suitable when the second order information is readily and easily calculated, because calculation of second order information, using numerical differentiation, is computationally expensive.

Gradient methods use information about the slope of the function to dictate a direction of search where the minimum is thought to lie. The simplest of these is the method of steepest descent in which a search is performed in a direction, $-\nabla f(x)$, where $\nabla f(x)$ is the gradient of the objective function. This method is very inefficient when the function to be minimized has long narrow valleys as, for example, is the case for Rosenbrock's function

$$
\begin{equation*}
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \tag{3-2}
\end{equation*}
$$

The minimum of this function is at $x=[1,1]$ where $f(x)=0$. A contour map of this function is shown in Figure 3-1, Steepest Descent Method on Rosenbrock's Function (Eq. 3-2), along with the solution path to the minimum for a steepest descent implementation starting at the point [-1.9,2]. The optimization was terminated after 1000 iterations, still a considerable distance from the minimum. The black areas are where the method is continually zigzagging from one side of the valley to another. Note that toward the center of the plot, a number of larger steps are taken when a point lands exactly at the center of the valley.

Figure 3-1: Steepest Descent Method on Rosenbrock's Function (Eq. 3-2)
This type of function (Equation 3-2), also known as the banana function, is notorious in unconstrained examples because of the way the curvature bends around the origin. Equation 3-2 is used throughout this section to illustrate the use of a variety of optimization techniques. The contours have been plotted in exponential increments because of the steepness of the slope surrounding the U-shaped valley.

This section continues with discussions of the following:

- "Quasi-Newton Methods" on page 3-8
- "Line Search" on page 3-10
- "Quasi-Newton Implementation" on page 3-11

Quasi-Newton Methods

Of the methods that use gradient information, the most favored are the quasi-Newton methods. These methods build up curvature information at each iteration to formulate a quadratic model problem of the form

$$
\begin{equation*}
\min _{x} \frac{1}{2} x^{T} H x+c^{T} x+b \tag{3-3}
\end{equation*}
$$

where the Hessian matrix, H, is a positive definite symmetric matrix, c is a constant vector, and b is a constant. The optimal solution for this problem occurs when the partial derivatives of x go to zero, i.e.,

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=H x^{*}+c=0 \tag{3-4}
\end{equation*}
$$

The optimal solution point, x^{*}, can be written as

$$
\begin{equation*}
x^{*}=-H^{-1}{ }_{c} \tag{3-5}
\end{equation*}
$$

Newton-type methods (as opposed to quasi-Newton methods) calculate H directly and proceed in a direction of descent to locate the minimum after a number of iterations. Calculating H numerically involves a large amount of computation. Quasi-Newton methods avoid this by using the observed behavior of $f(x)$ and $\nabla f(x)$ to build up curvature information to make an approximation to H using an appropriate updating technique.

A large number of Hessian updating methods have been developed. However, the formula of Broyden [3], Fletcher [14], Goldfarb [22], and Shanno [39] (BFGS) is thought to be the most effective for use in a General Purpose method.

The formula given by BFGS is

$$
\begin{equation*}
H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} s_{k}}-\frac{H_{k}^{T} s_{k}^{T} s_{k} H_{k}}{s_{k}^{T} H_{k} s_{k}} \tag{3-6}
\end{equation*}
$$

where

$$
\begin{aligned}
s_{k} & =x_{k+1}-x_{k} \\
q_{k} & =\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
\end{aligned}
$$

As a starting point, H_{0} can be set to any symmetric positive definite matrix, for example, the identity matrix I. To avoid the inversion of the Hessian H, you can derive an updating method that avoids the direct inversion of H by using a formula that makes an approximation of the inverse Hessian H^{-1} at each update. A well-known procedure is the DFP formula of Davidon [9], Fletcher, and Powell [16]. This uses the same formula as the BFGS method (Equation 3-6) except that q_{k} is substituted for s_{k}.

The gradient information is either supplied through analytically calculated gradients, or derived by partial derivatives using a numerical differentiation method via finite differences. This involves perturbing each of the design variables, x, in turn and calculating the rate of change in the objective function.

At each major iteration, k, a line search is performed in the direction

$$
\begin{equation*}
d=-H_{k}^{-1} \cdot \nabla f\left(x_{k}\right) \tag{3-7}
\end{equation*}
$$

The quasi-Newton method is illustrated by the solution path on Rosenbrock's function (Equation 3-2) in Figure 3-2, BFGS Method on Rosenbrock's Function. The method is able to follow the shape of the valley and converges to the minimum after 140 function evaluations using only finite difference gradients.

Figure 3-2: BFGS Method on Rosenbrock's Function

Line Search

Line search is a search method that is used as part of a larger optimization algorithm. At each step of the main algorithm, the line-search method searches along the line containing the current point, x_{k}, parallel to the search direction, which is a vector determined by the main algorithm. That is, the method finds the next iterate x_{k+1} of the form

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha^{*} d_{k} \tag{3-8}
\end{equation*}
$$

where x_{k} denotes the current iterate, d_{k} is the search direction, and alpha * α is a scalar step length parameter.

The line search method attempts to decrease the objective function along the line $x_{k}+\alpha d$ by repeatedly minimizing polynomial interpolation models of the objective function. The line search procedure has two main steps:

- The bracketing phase determines the range of points on the line $x_{k+1}=x_{k}+\alpha^{*} d_{k}$ to be searched. The bracket corresponds to an interval specifying the range of values of α.
- The sectioning step divides the bracket into subintervals, on which the minimum of the objective function is approximated by polynomial interpolation.

The resulting step length α satisfies the Wolfe conditions:

$$
\begin{align*}
& \because\left(x_{k}+\alpha d_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} d_{k} \tag{3-9}\\
& \nabla f\left(x_{k}+\alpha d_{k}\right)^{T} d_{k} \geq c_{2} \alpha \nabla f_{k}^{T} d_{k} \tag{3-10}
\end{align*}
$$

where c_{1} and c_{2} are constants with $0<c_{1}<c_{2}<1$.
The first condition (Equation 3-9) requires that α_{k} sufficiently decreases the objective function. The second condition (Equation 3-10) ensures that the step length is not too small. Points that satisfy both conditions (Equation 3-9 and Equation 3-10) are called acceptable points.

The line search method is an implementation of the algorithm described in Section 2-6 of [15]. See also [33] for more information about line search.

Quasi-Newton Implementation

This section describes the implementation of the quasi-Newton method in the toolbox. The algorithm consists of two phases:

- Determination of a direction of search (Hessian update)
- Line search procedures

Hessian Update

Many of the optimization functions determine the direction of search by updating the Hessian matrix at each iteration, using the BFGS method (Equation 3-6). The function fminunc also provides an option to use the DFP method given in "Quasi-Newton Methods" on page 3-8 (set HessUpdate to 'dfp' in options to select the DFP method). The Hessian, H, is always maintained to be positive definite so that the direction of search, d, is always in a descent direction. This means that for some arbitrarily small step α in the direction d, the objective function decreases in magnitude. You achieve positive definiteness of H by ensuring that H is initialized to be positive definite and thereafter $q_{k}^{T} s_{k}$ (from Equation 3-11) is always positive. The term $q_{k}^{T} s_{k}$ is a product of the line search step length parameter α_{k} and a combination of the search direction d with past and present gradient evaluations,

$$
\begin{equation*}
q_{k}^{T} s_{k}=\alpha_{k}\left(\nabla f\left(x_{k+1}\right)^{T} d-\nabla f\left(x_{k}\right)^{T} d\right) \tag{3-11}
\end{equation*}
$$

You always achieve the condition that $q_{k} s_{k}$ is positive by performing a sufficiently accurate line search. This is because the search direction, d, is a descent direction, so that α_{k} and negative gradient of $-\nabla f\left(x_{k}\right)^{T} d$ are always positive. Thus, the possible negative term $\nabla f\left(x_{k+1}\right)^{T} d$ can be made as small in magnitude as required by increasing the accuracy of the line search.

Line Search Procedures

After choosing the direction of the search, the optimization function uses a line search procedure to determine how far to move in the search direction. This section describes the line search procedures used by the functions lsqnonlin, lsqcurvefit, and fsolve.

The functions use one of two line search strategies, depending on whether gradient information is readily available or whether it must be calculated using a finite difference method:

- When gradient information is available, the default is to use a cubic polynomial method.
- When gradient information is not available, the default is to use a mixed cubic and quadratic polynomial method.

Cubic Polynomial Method

In the proposed cubic polynomial method, a gradient and a function evaluation are made at every iteration k. At each iteration an update is performed when a new point is found, x_{k+1}, that satisfies the condition

$$
\begin{equation*}
f\left(x_{k+1}\right)<f\left(x_{k}\right) \tag{3-12}
\end{equation*}
$$

At each iteration a step, α_{k}, is attempted to form a new iterate of the form

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} d \tag{3-13}
\end{equation*}
$$

If this step does not satisfy the condition (Equation 3-12), then α_{k} is reduced to form a new step, α_{k+1}. The usual method for this reduction is to use bisection, i.e., to continually halve the step length until a reduction is achieved in $f(x)$. However, this procedure is slow when compared to an approach that involves using gradient and function evaluations together with cubic interpolation/extrapolation methods to identify estimates of step length.

When a point is found that satisfies the condition (Equation 3-12), an update is performed if $q_{k}^{T} s_{k}$ is positive. If it is not, then further cubic interpolations are performed until the univariate gradient term $\nabla f\left(x_{k+1}\right)^{T} d$ is sufficiently small so that $q_{k}^{T} s_{k}$ is positive.

It is usual practice to reset α_{k} to unity after every iteration. However, note that the quadratic model (Equation 3-3) is generally only a good one near to the solution point. Therefore, α_{k} is modified at each major iteration to compensate for the case when the approximation to the Hessian is monotonically increasing or decreasing. To ensure that, as x_{k} approaches the solution point, the procedure reverts to a value of α_{k} close to unity, the
values of $q_{k}^{T} s_{k}-\nabla f\left(x_{k}\right)^{T} d$ and α_{k+1} are used to estimate the closeness to the solution point and thus to control the variation in α_{k}.

Cubic Polynomial Line Search Procedures. After each update procedure, a step length α_{k} is attempted, following which a number of scenarios are possible. Consideration of all the possible cases is quite complicated and so they are represented pictorially below.

For each case:

- The left point on the graph represents the point x_{k}.
- The slope of the line bisecting each point represents the slope of the univariate gradient, $\nabla f\left(x_{k}\right)^{T} d$, which is always negative for the left point.
- The right point is the point x_{k+1} after a step of α_{k} is taken in the direction d.

Case 1. $f\left(x_{k+1}\right)>f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)^{T} d>0$

Case 2. $f\left(x_{k+1}\right) \leq f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)^{T} d \geq 0$

Case 3. $f\left(x_{k+1}\right)<f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)^{T} d<0$

Case 4. $f\left(x_{k+1}\right) \geq f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)^{T} d \leq 0$ where
$p=1+q_{k}^{T} s_{k}-\nabla f\left(x_{k+1}\right)^{T} d+\min \left\{0, \alpha_{k+1}\right\}$

$$
\alpha_{k+1}=\min \left\{\alpha_{c}, \alpha_{k} / 2\right\}
$$

Cases 1 and 2 show the procedures performed when the value $\nabla f\left(x_{k+1}\right)^{T} d$ is positive. Cases 3 and 4 show the procedures performed when the value $\nabla f\left(x_{k+1}\right)^{T} d$ is negative. The notation $\min \{a, b, c\}$ refers to the smallest value of the set $\{a, b, c\}$.

At each iteration a cubicly interpolated step length α_{c} is calculated and then used to adjust the step length parameter α_{k+1}. Occasionally, for very nonlinear functions α_{c} can be negative, in which case α_{c} is given a value of $2 \alpha_{k}$.

Certain robustness measures have also been included so that, even in the case when false gradient information is supplied, you can achieve a reduction in $f(x)$ by taking a negative step. You do this by setting $\alpha_{k+1}=-\alpha_{k} / 2$ when α_{k} falls below a certain threshold value (e.g., 1e-8). This is important when extremely high precision is required, if only finite difference gradients are available.

Mixed Cubic and Quadratic Polynomial Method

The cubic interpolation/extrapolation method has proved successful for a large number of optimization problems. However, when analytic derivatives are not available, evaluating finite difference gradients is computationally expensive. Therefore, another interpolation/extrapolation method is implemented so that gradients are not needed at every iteration. The approach in these circumstances, when gradients are not readily available, is to use a quadratic interpolation method. The minimum is generally bracketed using some form of bisection method. This method, however, has the disadvantage that all the available information about the function is not used. For instance, a gradient calculation is always performed at each major iteration for the Hessian update. Therefore, given three points that bracket the minimum, it is possible to use cubic interpolation, which is likely to be more accurate than using quadratic interpolation. Further efficiencies are possible if, instead of using bisection to bracket the minimum, extrapolation methods similar to those used in the cubic polynomial method are used.

Hence, the method that is used in lsqnonlin, lsqcurvefit, and fsolve is to find three points that bracket the minimum and to use cubic interpolation to estimate the minimum at each line search. The estimation of step length at each minor iteration, j, is shown in the following graphs for a number of point combinations. The left-most point in each graph represents the function value $f\left(x_{1}\right)$ and univariate gradient $\nabla f\left(x_{k}\right)$ obtained at the last update. The remaining points represent the points accumulated in the minor iterations of the line search procedure.

The terms α_{q} and alpha sub c α_{c} refer to the minimum obtained from a respective quadratic and cubic interpolation or extrapolation. For highly nonlinear functions, ${ }^{\alpha_{c}}$ and α_{q} can be negative, in which case they are set to a value of $2 \alpha_{k}$ so that they are always maintained to be positive. Cases 1 and 2 use quadratic interpolation with two points and one gradient to estimate a third point that brackets the minimum. If this fails, cases 3 and 4 represent the possibilities for changing the step length when at least three points are available.

When the minimum is finally bracketed, cubic interpolation is achieved using one gradient and three function evaluations. If the interpolated point is greater than any of the three used for the interpolation, then it is replaced with the point with the smallest function value. Following the line search
procedure, the Hessian update procedure is performed as for the cubic polynomial line search method.

The following graphs illustrate the line search procedures for Cases 1 through 4 , with a gradient only for the first point.

Case 1. $f\left(x_{j}\right) \geq f\left(x_{k}\right)$

Case 2. $f\left(x_{j}\right)<f\left(x_{k}\right)$

Case 3. $f\left(x_{j+1}\right)<f\left(x_{k}\right)$

Case 4. $f\left(x_{j+1}\right)>f\left(x_{k}\right)$

Least-Squares Optimization

The line search procedures used in conjunction with a quasi-Newton method are used as part of the nonlinear least-squares (LS) optimization routines, lsqnonlin and lsqcurvefit. In the least-squares problem a function $f(x)$ is minimized that is a sum of squares.

$$
\begin{equation*}
\min _{x \in \Re^{n}} f(x)=\frac{1}{2}\|F(x)\|_{2}^{2}=\frac{1}{2} \sum_{i} F_{i}(x)^{2} \tag{3-14}
\end{equation*}
$$

Problems of this type occur in a large number of practical applications, especially when fitting model functions to data, i.e., nonlinear parameter estimation. They are also prevalent in control where you want the output, $y(x, y)$, to follow some continuous model trajectory, $\phi(t)$, for vector x and scalar t. This problem can be expressed as

$$
\begin{equation*}
\min _{x \in \Re^{n}} \int_{t_{2}}^{t_{1}}(y(x, t)-\phi(t))^{2} d t \tag{3-15}
\end{equation*}
$$

where $y(x, t)$ and $\phi(t)$ are scalar functions.
When the integral is discretized using a suitable quadrature formula, Equation 3-15 can be formulated as a least-squares problem:

$$
\begin{equation*}
\min _{x \in \Re^{n}} f(x)=\sum_{i=1}^{m}\left(\bar{y}\left(x, t_{i}\right)-\bar{\phi}\left(t_{i}\right)\right)^{2} \tag{3-16}
\end{equation*}
$$

where \bar{y} and $\bar{\phi}$ include the weights of the quadrature scheme. Note that in this problem the vector $F(x)$ is

$$
F(x)=\left[\begin{array}{c}
\bar{y}\left(x, t_{1}\right)-\bar{\phi}\left(t_{1}\right) \\
\bar{y}\left(x, t_{2}\right)-\bar{\phi}\left(t_{2}\right) \\
\cdots \\
\bar{y}\left(x, t_{m}\right)-\bar{\phi}\left(t_{m}\right)
\end{array}\right]
$$

In problems of this kind, the residual $\|F(x)\|$ is likely to be small at the optimum since it is general practice to set realistically achievable target
trajectories. Although the function in LS (Equation 3-15) can be minimized using a general unconstrained minimization technique, as described in "Unconstrained Optimization" on page 3-6, certain characteristics of the problem can often be exploited to improve the iterative efficiency of the solution procedure. The gradient and Hessian matrix of LS (Equation 3-15) have a special structure.

Denoting the m-by- n Jacobian matrix of $F(x)$ as $J(x)$, the gradient vector of $f(x)$ as $G(x)$, the Hessian matrix of $f(x)$ as $H(x)$, and the Hessian matrix of each $F_{i}(x)$ as $H_{i}(x)$, you have

$$
\begin{align*}
& G(x)=2 J(x)^{T} F(x) \\
& H(x)=2 J(x)^{T} J(x)+2 Q(x) \tag{3-17}
\end{align*}
$$

where

$$
Q(x)=\sum_{i=1}^{m} F_{i}(x) \cdot H_{i}(x)
$$

The matrix $Q(x)$ has the property that when the residual $\|F(x)\|$ tends to zero as x_{k} approaches the solution, then $Q(x)$ also tends to zero. Thus when $\|F(x)\|$ is small at the solution, a very effective method is to use the Gauss-Newton direction as a basis for an optimization procedure.

This section continues with discussions of the following:

- "Gauss-Newton Method" on page 3-20
- "Levenberg-Marquardt Method" on page 3-21
- "Nonlinear Least-Squares Implementation" on page 3-22

Gauss-Newton Method

In the Gauss-Newton method, a search direction, d_{k}, is obtained at each major iteration, k, that is a solution of the linear least-squares problem.

$$
\begin{equation*}
\min _{x \in \Re^{n}}\left\|J\left(x_{k}\right) d_{k}-F\left(x_{k}\right)\right\|_{2}^{2} \tag{3-18}
\end{equation*}
$$

The direction derived from this method is equivalent to the Newton direction when the terms of $Q(x)$ can be ignored. The search direction d_{k} can be used as part of a line search strategy to ensure that at each iteration the function $f(x)$ decreases.

Consider the efficiencies that are possible with the Gauss-Newton method. Gauss-Newton Method on Rosenbrock's Function on page 3-20 shows the path to the minimum on Rosenbrock's function (Equation 3-2) when posed as a least-squares problem. The Gauss-Newton method converges after only 48 function evaluations using finite difference gradients, compared to 140 iterations using an unconstrained BFGS method.

Figure 3-3: Gauss-Newton Method on Rosenbrock's Function
The Gauss-Newton method often encounters problems when the second order term $Q(x)$ in Equation 3-17 is significant. A method that overcomes this problem is the Levenberg-Marquardt method.

Levenberg-Marquardt Method

The Levenberg-Marquardt [27], and [29] method uses a search direction that is a solution of the linear set of equations

$$
\begin{equation*}
\left(J\left(x_{k}\right)^{T} J\left(x_{k}\right)+\lambda_{k} I\right) d_{k}=-J\left(x_{k}\right)^{T} F\left(x_{k}\right) \tag{3-19}
\end{equation*}
$$

where the scalar λ_{k} controls both the magnitude and direction of d_{k}. When λ_{k} is zero, the direction d_{k} is identical to that of the Gauss-Newton method. As λ_{k} tends to infinity, d_{k} tends toward a vector of zeros and a steepest descent direction. This implies that for some sufficiently large λ_{k}, the term $F\left(x_{k}+d_{k}\right)<F\left(x_{k}\right)$ holds true. The term λ_{k} can therefore be controlled to ensure descent even when second order terms, which restrict the efficiency of the Gauss-Newton method, are encountered.

The Levenberg-Marquardt method therefore uses a search direction that is a cross between the Gauss-Newton direction and the steepest descent. This is illustrated in Figure 3-4, Levenberg-Marquardt Method on Rosenbrock's Function. The solution for Rosenbrock's function (Equation 3-2) converges after 90 function evaluations compared to 48 for the Gauss-Newton method. The poorer efficiency is partly because the Gauss-Newton method is generally more effective when the residual is zero at the solution. However, such information is not always available beforehand, and the increased robustness of the Levenberg-Marquardt method compensates for its occasional poorer efficiency.

Figure 3-4: Levenberg-Marquardt Method on Rosenbrock's Function

Nonlinear Least-Squares Implementation

For a general survey of nonlinear least-squares methods, see Dennis [10]. Specific details on the Levenberg-Marquardt method can be found in Moré [30]. Both the Gauss-Newton method and the Levenberg-Marquardt method are implemented in the Optimization Toolbox. Details of the implementations are discussed below:

- "Gauss-Newton Implementation" on page 3-22
- "Levenberg-Marquardt Implementation" on page 3-23

Gauss-Newton Implementation

The Gauss-Newton method is implemented using polynomial line search strategies similar to those discussed for unconstrained optimization. In solving the linear least-squares problem (Equation 3-15), you can avoid exacerbation of the conditioning of the equations by using the QR decomposition of $J\left(x_{k}\right)$ and applying the decomposition to $F\left(x_{k}\right)$ (using the MATLAB \operator). This is in contrast to inverting the explicit matrix, $J\left(x_{k}\right)^{T} J\left(x_{k}\right)$, which can cause unnecessary errors to occur.

Robustness measures are included in the method. These measures consist of changing the algorithm to the Levenberg-Marquardt method when either the step length goes below a threshold value ($1 \mathrm{e}-15$ in this implementation) or
when the condition number of $J\left(x_{k}\right)$ is below $1 \mathrm{e}-10$. The condition number is a ratio of the largest singular value to the smallest.

Levenberg-Marquardt Implementation

The main difficulty in the implementation of the Levenberg-Marquardt method is an effective strategy for controlling the size of λ_{k} at each iteration so that it is efficient for a broad spectrum of problems. The method used in this implementation is to estimate the relative nonlinearity of $f(x)$ using a linear predicted sum of squares $f_{p}\left(x_{k}\right)$ and a cubicly interpolated estimate of the minimum $f_{k}\left(x_{*}\right)$. In this way the size of λ_{k} is determined at each iteration.

The linear predicted sum of squares is calculated as

$$
\begin{equation*}
f_{p}\left(x_{k}\right)=J\left(x_{k-1}\right) d_{k-1}+F\left(x_{k-1}\right) \tag{3-20}
\end{equation*}
$$

and the term $f_{k}\left(x_{*}\right)$ is obtained by cubicly interpolating the points $f\left(x_{k}\right)$ and $f\left(x_{k-1}\right)$. A step length parameter α^{*} is also obtained from this interpolation, which is the estimated step to the minimum. If $f_{p}\left(x_{k}\right)$ is greater than $f_{k}\left(x_{*}\right)$, then λ_{k} is reduced, otherwise it is increased. The justification for this is that the difference between $f_{p}\left(x_{k}\right)$ and $f_{k}\left(x_{*}\right)$ is a measure of the effectiveness of the Gauss-Newton method and the linearity of the problem. This determines whether to use a direction approaching the steepest descent direction or the Gauss-Newton direction.

The formulas for the reduction and increase in λ_{k}, which have been developed through consideration of a large number of test problems, are shown in the following figure.

Figure 3-5: Updating λ_{k}
Following the update of λ_{k}, a solution of Equation 3-19 is used to obtain a search direction, d_{k}. A step length of unity is then taken in the direction d_{k}, which is followed by a line search procedure similar to that discussed for the unconstrained implementation. The line search procedure ensures that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ at each major iteration and the method is therefore a descent method.

The implementation has been successfully tested on a large number of nonlinear problems. It has proved to be more robust than the Gauss-Newton method and iteratively more efficient than an unconstrained method. The Levenberg-Marquardt algorithm is the default method used by lsqnonlin. You can select the Gauss-Newton method by setting LevenbergMarquardt to 'off' in options.

Nonlinear Systems of Equations

Solving a nonlinear system of equations $F(x)$ involves finding a solution such that every equation in the nonlinear system is 0 . That is, there are n equations and n unknowns. The objective is to find x is an element of the n-dimensional real numbers $x \in \Re^{n}$ such that $F(x)=0$ where

$$
F(x)=\left[\begin{array}{c}
F_{1}(x) \\
F_{2}(x) \\
\vdots \\
F_{n}(x)
\end{array}\right]
$$

The assumption is that a zero, or root, of the system exists. These equations may represent economic constraints, for example, that must all be satisfied.

Gauss-Newton Method

One approach to solving this problem is to use a Nonlinear Least-Squares solver, such those described in "Least-Squares Optimization" on page 3-18. Since the assumption is the system has a root, it would have a small residual; therefore, using the Gauss-Newton Method is effective. In this case, each iteration solves a linear least-squares problem, as described in Equation 3-18, to find the search direction. (See "Gauss-Newton Method" on page 3-20 for more information.)

Trust-Region Dogleg Method

Another approach is to solve a linear system of equations to find the search direction, namely, Newton's method says to solve for the search direction d_{k} such that

$$
\begin{aligned}
& J\left(x_{k}\right) d_{k}=-F\left(x_{k}\right) \\
& x_{k+1}=x_{k}+d_{k}
\end{aligned}
$$

where $J\left(x_{k}\right)$ is the n-by-n Jacobian

$$
J\left(x_{k}\right)=\left[\begin{array}{c}
\nabla F_{1}\left(x_{k}\right)^{T} \\
\nabla F_{2}\left(x_{k}\right)^{T} \\
\vdots \\
\nabla F_{n}\left(x_{k}\right)^{T}
\end{array}\right]
$$

Newton's method can run into difficulties. $J\left(x_{k}\right)$ may be singular, and so the Newton step d_{k} is not even defined. Also, the exact Newton step d_{k} may be expensive to compute. In addition, Newton's method may not converge if the starting point is far from the solution.

Using trust-region techniques (introduced in "Trust-Region Methods for Nonlinear Minimization" on page 4-3) improves robustness when starting far from the solution and handles the case when $J\left(x_{k}\right)$ is singular. To use a trust-region strategy, a merit function is needed to decide if x_{k+1} is better or worse than x_{k}. A possible choice is

$$
\min _{d} f(d)=\frac{1}{2} F\left(x_{k}+d\right)^{T} F\left(x_{k}+d\right)
$$

But a minimum of $f(d)$ is not necessarily a root of $F(x)$.
The Newton step d_{k} is a root of

$$
M\left(x_{k}+d\right)=F\left(x_{k}\right)+J\left(x_{k}\right) d
$$

and so it is also a minimum of $m(d)$ where

$$
\begin{align*}
\min _{d}^{\min } m(d)=\frac{1}{2}\left\|M\left(x_{k}+d\right)\right\|_{2}^{2}= & \frac{1}{2}\left\|F\left(x_{k}\right)+J\left(x_{k}\right) d\right\| \\
= & \frac{1}{2} F\left(x_{k}\right)^{T} F\left(x_{k}\right)+d^{T} J\left(x_{k}\right)^{T} F\left(x_{k}\right) \\
& +\frac{1}{2} d^{T}\left(J\left(x_{k}\right)^{T} J\left(x_{k}\right)\right) d \tag{3-21}
\end{align*}
$$

Then $m(d)$ is a better choice of merit function than $f(d)$, and so the trust region subproblem is

$$
\begin{equation*}
\min _{d}\left[\frac{1}{2} F\left(x_{k}\right)^{T} F\left(x_{k}\right)+d^{T} J\left(x_{k}\right)^{T} F\left(x_{k}\right)+\frac{1}{2} d^{T}\left(J\left(x_{k}\right)^{T} J\left(x_{k}\right)\right) d\right] \tag{3-22}
\end{equation*}
$$

such that $\|D \cdot d\| \leq \Delta$. This subproblem can be efficiently solved using a dogleg strategy.

For an overview of trust-region methods, see Conn [5], and Nocedal [33].

Nonlinear Equations Implementation

Both the Gauss-Newton and trust-region dogleg methods are implemented in the Optimization Toolbox. Details of their implementations are discussed below.

Gauss-Newton Implementation

The Gauss-Newton implementation is the same as that for least-squares optimization. It is described in "Gauss-Newton Implementation" on page 3-22.

Trust-Region Dogleg Implementation

The key feature of this algorithm is the use of the Powell dogleg procedure for computing the step d, which minimizes Equation 3-22. For a detailed description, see Powell [36].

The step d is constructed from a convex combination of a Cauchy step (a step along the steepest descent direction) and a Gauss-Newton step for $f(x)$. The Cauchy step is calculated as

$$
d_{C}=-\alpha J\left(x_{k}\right)^{T} F\left(x_{k}\right)
$$

where α is chosen to minimize Equation 3-21.
The Gauss-Newton step is calculated by solving

$$
J\left(x_{k}\right) \cdot d_{G N}=-F\left(x_{k}\right)
$$

using the MATLAB
(matrix left division) operator.
The step d is chosen so that

$$
d=d_{C}+\lambda\left(d_{G N}-d_{C}\right)
$$

where λ is the largest value in the interval $[0,1]$ such that $\|d\| \leq \Delta$. If J_{k} is (nearly) singular, d is just the Cauchy direction.

The dogleg algorithm is efficient since it requires only one linear solve per iteration (for the computation of the Gauss-Newton step). Additionally, it can be more robust than using the Gauss-Newton method with a line search.

Constrained Optimization

In constrained optimization, the general aim is to transform the problem into an easier subproblem that can then be solved and used as the basis of an iterative process. A characteristic of a large class of early methods is the translation of the constrained problem to a basic unconstrained problem by using a penalty function for constraints that are near or beyond the constraint boundary. In this way the constrained problem is solved using a sequence of parameterized unconstrained optimizations, which in the limit (of the sequence) converge to the constrained problem. These methods are now considered relatively inefficient and have been replaced by methods that have focused on the solution of the Kuhn-Tucker (KT) equations. The KT equations are necessary conditions for optimality for a constrained optimization problem. If the problem is a so-called convex programming problem, that is, $f(x)$ and $G_{i}(x), i=1, \ldots, m$, are convex functions, then the KT equations are both necessary and sufficient for a global solution point.

Referring to GP (Equation 3-1), the Kuhn-Tucker equations can be stated as

$$
\begin{array}{rlr}
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \cdot \nabla G_{i}\left(x^{*}\right) & =0 & \\
\lambda_{i}^{*} \cdot G_{i}\left(x^{*}\right) & =0 & i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0 & i=m_{e}+1, \ldots, m \tag{3-23}
\end{array}
$$

in addition to the original constraints in Equation 3-1.
The first equation describes a canceling of the gradients between the objective function and the active constraints at the solution point. For the gradients to be canceled, Lagrange multipliers ($\lambda_{i}, i=1, \ldots m$) are necessary to balance the deviations in magnitude of the objective function and constraint gradients. Because only active constraints are included in this canceling operation, constraints that are not active must not be included in this operation and so are given Lagrange multipliers equal to 0 . This is stated implicitly in the last two equations of Equation 3-23.

The solution of the KT equations forms the basis to many nonlinear programming algorithms. These algorithms attempt to compute the Lagrange multipliers directly. Constrained quasi-Newton methods guarantee
superlinear convergence by accumulating second-order information regarding the KT equations using a quasi-Newton updating procedure. These methods are commonly referred to as Sequential Quadratic Programming (SQP) methods, since a QP subproblem is solved at each major iteration (also known as Iterative Quadratic Programming, Recursive Quadratic Programming, and Constrained Variable Metric methods).

This section continues with discussions of the following topics:

- "Sequential Quadratic Programming (SQP)" on page 3-30
- A "Quadratic Programming (QP) Subproblem" on page 3-31
- "SQP Implementation" on page 3-32
- "Simplex Algorithm" on page 3-39

Sequential Quadratic Programming (SQP)

SQP methods represent the state of the art in nonlinear programming methods. Schittkowski [38], for example, has implemented and tested a version that outperforms every other tested method in terms of efficiency, accuracy, and percentage of successful solutions, over a large number of test problems.

Based on the work of Biggs [1], Han [24], and Powell ([34] and [35]), the method allows you to closely mimic Newton's method for constrained optimization just as is done for unconstrained optimization. At each major iteration, an approximation is made of the Hessian of the Lagrangian function using a quasi-Newton updating method. This is then used to generate a QP subproblem whose solution is used to form a search direction for a line search procedure. An overview of SQP is found in Fletcher [15], Gill et. al. [21], Powell [37], and Schittkowski [25]. The general method, however, is stated here.

Given the problem description in GP (Equation 3-1) the principal idea is the formulation of a QP subproblem based on a quadratic approximation of the Lagrangian function.

$$
\begin{equation*}
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} \cdot g_{i}(x) \tag{3-24}
\end{equation*}
$$

Here you simplify Equation 3-1 by assuming that bound constraints have been expressed as inequality constraints. You obtain the QP subproblem by linearizing the nonlinear constraints.

Quadratic Programming (QP) Subproblem

$$
\begin{align*}
& \underset{d \in \Re^{n}}{\operatorname{minimize}} \quad \frac{1}{2} d^{T} H_{k} d+\nabla f\left(x_{k}\right)^{T} d \\
& \nabla g_{i}\left(x_{k}\right)^{T} d+g_{i}\left(x_{k}\right)=0 \quad i=1, \ldots m_{e} \\
& \nabla g_{i}\left(x_{k}\right)^{T} d+g_{i}\left(x_{k}\right) \leq 0 \quad i=m_{e}+1, \ldots m \tag{3-25}
\end{align*}
$$

This subproblem can be solved using any QP algorithm (see, for instance, "Quadratic Programming Solution" on page 3-34). The solution is used to form a new iterate

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

The step length parameter α_{k} is determined by an appropriate line search procedure so that a sufficient decrease in a merit function is obtained (see "Updating the Hessian Matrix" on page 3-33). The matrix H_{k} is a positive definite approximation of the Hessian matrix of the Lagrangian function (Equation 3-24). H_{k} can be updated by any of the quasi-Newton methods, although the BFGS method (see "Updating the Hessian Matrix" on page 3-33) appears to be the most popular.

A nonlinearly constrained problem can often be solved in fewer iterations than an unconstrained problem using SQP. One of the reasons for this is that, because of limits on the feasible area, the optimizer can make informed decisions regarding directions of search and step length.

Consider Rosenbrock's function (Equation 3-2) with an additional nonlinear inequality constraint, $g(x)$,

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}-1.5 \leq 0 \tag{3-26}
\end{equation*}
$$

This was solved by an SQP implementation in 96 iterations compared to 140 for the unconstrained case. SQP Method on Nonlinear Linearly Constrained Rosenbrock's Function (Eq. 3-2) on page 3-32 shows the path to the solution point $x=[0.9072,0.8228]$ starting at $x=[-1.9,2]$.

Figure 3-6: SQP Method on Nonlinear Linearly Constrained Rosenbrock's Function (Eq. 3-2)

SQP Implementation

The SQP implementation consists of three main stages, which are discussed briefly in the following subsections:

- "Updating the Hessian Matrix" on page 3-33 of the Lagrangian function
- "Quadratic Programming Solution" on page 3-34
- "Line Search and Merit Function" on page 3-38 calculation

Updating the Hessian Matrix

At each major iteration a positive definite quasi-Newton approximation of the Hessian of the Lagrangian function, H, is calculated using the BFGS method, where $\lambda_{i}(i=1, \ldots, m)$ is an estimate of the Lagrange multipliers.

$$
\begin{equation*}
H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} s_{k}}-\frac{H_{k}^{T} H_{k}}{s_{k}^{T} H_{k} s_{k}} \tag{3-27}
\end{equation*}
$$

where

$$
\begin{aligned}
& s_{k}=x_{k+1}-x_{k} \\
& q_{k}=\nabla f\left(x_{k+1}\right)+\sum_{i=1}^{n} \lambda_{i} \cdot \nabla g_{i}\left(x_{k+1}\right)-\left(\nabla f\left(x_{k}\right)+\sum_{i=1}^{n} \lambda_{i} \cdot \nabla g_{i}\left(x_{k}\right)\right)
\end{aligned}
$$

Powell [35] recommends keeping the Hessian positive definite even though it might be positive indefinite at the solution point. A positive definite Hessian is maintained providing $q_{k}^{T} s_{k}$ is positive at each update and that H is initialized with a positive definite matrix. When $q_{k}^{T} s_{k}$ is not positive, q_{k} is modified on an element-by-element basis so that $q_{k}^{T} s_{k}>0$. The general aim of this modification is to distort the elements of q_{k}, which contribute to a positive definite update, as little as possible. Therefore, in the initial phase of the modification, the most negative element of $q_{k}: * s_{k}$ is repeatedly halved. This procedure is continued until $q_{k}^{T} s_{k}$ is greater than or equal to a small negative tolerance. If, after this procedure, $q_{k}^{T} s_{k}$ is still not positive, modify q_{k} by adding a vector v multiplied by a constant scalar w, that is,

$$
\begin{equation*}
q_{k}=q_{k}+w v \tag{3-28}
\end{equation*}
$$

where

$$
\begin{aligned}
& \quad v_{i}=\nabla g_{i}\left(x_{k+1}\right) \cdot g_{i}\left(x_{k+1}\right)-\nabla g_{i}\left(x_{k}\right) \cdot g_{i}\left(x_{k}\right), \\
& \text { if }\left(q_{k}\right)_{i} \cdot w<0 \text { and }\left(q_{k}\right)_{i} \cdot\left(s_{k}\right)_{i}<0 \quad(i=1, \ldots, m) \\
& v_{i}=0 \text { otherwise }
\end{aligned}
$$

and increase w systematically until $q_{k}^{T} s_{k}$ becomes positive.

The functions fmincon, fminimax, fgoalattain, and fseminf all use SQP. If Display is set to 'iter' in options, then various information is given such as function values and the maximum constraint violation. When the Hessian has to be modified using the first phase of the preceding procedure to keep it positive definite, then Hessian modified is displayed. If the Hessian has to be modified again using the second phase of the approach described above, then Hessian modified twice is displayed. When the QP subproblem is infeasible, then infeasible is displayed. Such displays are usually not a cause for concern but indicate that the problem is highly nonlinear and that convergence might take longer than usual. Sometimes the message no update is displayed, indicating that $q_{k}^{T} s_{k}$ is nearly zero. This can be an indication that the problem setup is wrong or you are trying to minimize a noncontinuous function.

Quadratic Programming Solution

At each major iteration of the SQP method, a QP problem of the following form is solved, where A_{i} refers to the ith row of the m-by- n matrix A.

$$
\begin{align*}
\underset{d \in \Re^{n}}{\operatorname{minimize}} & q(d)=\frac{1}{2} d^{T} H d+c^{T} d \\
& A_{i} d=b_{i} \quad i=1, \ldots, m_{e} \\
& A_{i} d \leq b_{i} \quad i=m_{e}+1, \ldots, m \tag{3-29}
\end{align*}
$$

The method used in the Optimization Toolbox is an active set strategy (also known as a projection method) similar to that of Gill et. al., described in [20] and [19]. It has been modified for both Linear Programming (LP) and Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the calculation of a feasible point (if one exists). The second phase involves the generation of an iterative sequence of feasible points that converge to the solution. In this method an active set, \bar{A}_{k}, is maintained that is an estimate of the active constraints (i.e., those that are on the constraint boundaries) at the solution point. Virtually all QP algorithms are active set methods. This point is emphasized because there exist many different methods that are very similar in structure but that are described in widely different terms.
$\overline{A_{k}}$ is updated at each iteration k, and this is used to form a basis for a search direction \hat{d}_{k}. Equality constraints always remain in the active set \bar{A}_{k}. The notation for the variable \hat{d}_{k} is used here to distinguish it from d_{k} in the major iterations of the SQP method. The search direction \hat{d}_{k} is calculated and minimizes the objective function while remaining on any active constraint boundaries. The feasible subspace for \hat{d}_{k} is formed from a basis Z_{k} whose columns are orthogonal to the estimate of the active set \bar{A}_{k} (i.e., $\bar{A}_{k} Z_{k}=0$). Thus a search direction, which is formed from a linear summation of any combination of the columns of Z_{k}, is guaranteed to remain on the boundaries of the active constraints.

The matrix Z_{k} is formed from the last $m-l$ columns of the QR decomposition of the matrix \bar{A}_{k}^{T}, where l is the number of active constraints and $l<m$. That is, Z_{k} is given by

$$
\begin{equation*}
Z_{k}=Q[:, l+1: m] \tag{3-30}
\end{equation*}
$$

where

$$
Q^{T} \bar{A}_{k}^{T}=\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

Once Z_{k} is found, a new search direction \hat{d}_{k} is sought that minimizes $q(d)$ where \hat{d}_{k} is in the null space of the active constraints. That is, \hat{d}_{k} is a linear combination of the columns of $Z_{k}: \hat{d}_{k}=Z_{k} p$ for some vector p.

Then if you view the quadratic as a function of p, by substituting for \hat{d}_{k}, you have

$$
\begin{equation*}
q(p)=\frac{1}{2} p^{T} Z_{k}^{T} H Z_{k} p+c^{T} Z_{k} p \tag{3-31}
\end{equation*}
$$

Differentiating this with respect to p yields

$$
\begin{equation*}
\nabla q(p)=Z_{k}^{T} H Z_{k} p+Z_{k}^{T} c \tag{3-32}
\end{equation*}
$$

$\nabla q(p)$ is referred to as the projected gradient of the quadratic function because it is the gradient projected in the subspace defined by Z_{k}. The term
$Z_{k}^{T} H Z_{k}$ is called the projected Hessian. Assuming the Hessian matrix H is positive definite (which is the case in this implementation of SQP), then the minimum of the function $q(p)$ in the subspace defined by Z_{k} occurs when gradient of $\nabla q(p)=0$, which is the solution of the system of linear equations

$$
\begin{equation*}
Z_{k}^{T} H Z_{k} p=-Z_{k}^{T} c \tag{3-33}
\end{equation*}
$$

A step is then taken of the form

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha \hat{d}_{k} \quad \text { where } \hat{d}_{k}=Z_{k}^{T} p \tag{3-34}
\end{equation*}
$$

At each iteration, because of the quadratic nature of the objective function, there are only two choices of step length α. A step of unity along \hat{d}_{k} is the exact step to the minimum of the function restricted to the null space of $\overline{A_{k}}$. If such a step can be taken, without violation of the constraints, then this is the solution to QP (Equation 3-30). Otherwise, the step along \hat{d}_{k} to the nearest constraint is less than unity and a new constraint is included in the active set at the next iteration. The distance to the constraint boundaries in any direction \hat{d}_{k} is given by

$$
\begin{equation*}
\alpha=\min _{i}\left\{\frac{-\left(A_{i} x_{k}-b_{i}\right)}{A_{i} \hat{d}_{k}}\right\} \quad(i=1, \ldots, m) \tag{3-35}
\end{equation*}
$$

which is defined for constraints not in the active set, and where the direction \hat{d}_{k} is towards the constraint boundary, i.e., $A_{i} \hat{d}_{k}>0, i=1, \ldots, m$.

When n independent constraints are included in the active set, without location of the minimum, Lagrange multipliers, λ_{k}, are calculated that satisfy the nonsingular set of linear equations

$$
\begin{equation*}
\bar{A}_{k}^{T} \lambda_{k}=c \tag{3-36}
\end{equation*}
$$

If all elements of λ_{k} are positive, x_{k} is the optimal solution of QP (Equation $3-30)$. However, if any component of λ_{k} is negative, and the component does not correspond to an equality constraint, then the corresponding element is deleted from the active set and a new iterate is sought.

Initialization. The algorithm requires a feasible point to start. If the current point from the SQP method is not feasible, then you can find a point by solving the linear programming problem

```
    minimize
\(\gamma \in \Re, x \in \Re^{n}\)
    \(A_{i} x=b_{i} \quad i=1, \ldots, m_{e}\)
    \(A_{i} x-\gamma \leq b_{i} \quad i=m_{e}+1, \ldots, m\)
```

The notation A_{i} indicates the i th row of the matrix A. You can find a feasible point (if one exists) to Equation $3-37$ by setting x to a value that satisfies the equality constraints. You can determine this value by solving an underor overdetermined set of linear equations formed from the set of equality constraints. If there is a solution to this problem, then the slack variable γ is set to the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the search direction to the steepest descent direction at each iteration, where g_{k} is the gradient of the objective function (equal to the coefficients of the linear objective function).

$$
\begin{equation*}
\hat{d}_{k}=-Z_{k} Z_{k}^{T} g_{k} \tag{3-38}
\end{equation*}
$$

If a feasible point is found using the preceding LP method, the main QP phase is entered. The search direction \hat{d}_{k} is initialized with a search direction \hat{d}_{1} found from solving the set of linear equations

$$
\begin{equation*}
H \hat{d}_{1}=-g_{k} \tag{3-39}
\end{equation*}
$$

where g_{k} is the gradient of the objective function at the current iterate x_{k} (i.e., $H x_{k}+c$).

If a feasible solution is not found for the QP problem, the direction of search for the main SQP routine \hat{d}_{k} is taken as one that minimizes γ.

Line Search and Merit Function

The solution to the QP subproblem produces a vector d_{k}, which is used to form a new iterate

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha d_{k} \tag{3-40}
\end{equation*}
$$

The step length parameter α_{k} is determined in order to produce a sufficient decrease in a merit function. The merit function used by Han [24] and Powell [35] of the following form is used in this implementation.

$$
\begin{equation*}
\Psi(x)=f(x)+\sum_{i=1}^{m_{e}} r_{i} \cdot g_{i}(x)+\sum_{i=m_{e}+1}^{m} r_{i} \cdot \max \left\{0, g_{i}(x)\right\} \tag{3-41}
\end{equation*}
$$

Powell recommends setting the penalty parameter

$$
\begin{equation*}
r_{i}=\left(r_{k+1}\right)_{i}=\max _{i}\left\{\lambda_{i}, \frac{1}{2}\left(\left(r_{k}\right)_{i}+\lambda_{i}\right)\right\}, \quad i=1, \ldots, m \tag{3-42}
\end{equation*}
$$

This allows positive contribution from constraints that are inactive in the QP solution but were recently active. In this implementation, the penalty parameter r_{i} is initially set to

$$
\begin{equation*}
r_{i}=\frac{\|\nabla f(x)\|}{\left\|\nabla g_{i}(x)\right\|} \tag{3-43}
\end{equation*}
$$

where \| \| represents the Euclidean norm.
This ensures larger contributions to the penalty parameter from constraints with smaller gradients, which would be the case for active constraints at the solution point.

Simplex Algorithm

The simplex algorithm, invented by George Dantzig in 1947, is one of the earliest and best known optimization algorithms. The algorithm solves the linear programming problem

$$
\begin{array}{ll}
\min _{x} f^{T} x \quad \text { subject to } \quad & A \cdot x \leq b \\
& A e q \cdot x=b e q \\
& l b \leq x \leq u b
\end{array}
$$

The algorithm moves along the edges of the polyhedron defined by the constraints, from one vertex to another, while decreasing the value of the objective function, $f^{T} x$, at each step. This section describes an improved version of the original simplex algorithm that returns a vertex optimal solution.

This section covers the following topics:

- "Main Algorithm" on page 3-39
- "Preprocessing" on page 3-41
- "Using the Simplex Algorithm" on page 3-41
- "Basic and Nonbasic Variables" on page 3-42
- "References" on page 3-42

Main Algorithm

The simplex algorithm has two phases:

- Phase 1 - Compute an initial basic feasible point.
- Phase 2 - Compute the optimal solution to the original problem.

Note You cannot supply an initial point $x 0$ for linprog with the simplex algorithm. If you pass in $x 0$ as an input argument, linprog ignores $x 0$ and computes its own initial point for the algorithm.

Phase 1. In phase 1, the algorithm finds an initial basic feasible solution (see "Basic and Nonbasic Variables" on page 3-42 for a definition) by solving an auxiliary piecewise linear programming problem. The objective function of
the auxiliary problem is the linear penalty function $P=\sum_{j} P_{j}\left(x_{j}\right)$, where $P_{\mathrm{j}}\left(x_{\mathrm{j}}\right)$ is defined by

$$
P_{j}\left(x_{j}\right)=\left(\begin{array}{cl}
x_{j}-u_{j} & \text { if } x_{j}>u_{j} \\
0 & \text { if } l_{j} \leq x_{j} \leq u_{j} \\
l_{j}-x_{j} & \text { if } l_{j}>x_{j}
\end{array}\right.
$$

$P(x)$ measures how much a point x violates the lower and upper bound conditions. The auxiliary problem is

$$
\begin{array}{ll}
\min _{x} \sum_{j} P_{j} \quad \text { subject to } \quad & A \cdot x \leq b \\
& A e q \cdot x=b e q
\end{array}
$$

The original problem has a feasible basis point if and only if the auxiliary problem has minimum value 0 .

The algorithm finds an initial point for the auxiliary problem by a heuristic method that adds slack and artificial variables as necessary. The algorithm then uses this initial point together with the simplex algorithm to solve the auxiliary problem. The optimal solution is the initial point for phase 2 of the main algorithm.

Phase 2. In phase 2, the algorithm applies the simplex algorithm, starting at the initial point from phase 1, to solve the original problem. At each iteration, the algorithm tests the optimality condition and stops if the current solution is optimal. If the current solution is not optimal, the algorithm

1 Chooses one variable, called the entering variable, from the nonbasic variables and adds the corresponding column of the nonbasis to the basis (see "Basic and Nonbasic Variables" on page 3-42 for definitions).

2 Chooses a variable, called the leaving variable, from the basic variables and removes the corresponding column from the basis.

3 Updates the current solution and the current objective value.
The algorithm chooses the entering and the leaving variables by solving two linear systems while maintaining the feasibility of the solution.

Preprocessing

The simplex algorithm uses the same preprocessing steps as the large-scale linear programming solver, which are described in "Preprocessing" on page $4-18$. In addition, the algorithm uses two other steps:

1 Eliminates columns that have only one nonzero element and eliminates their corresponding rows.

2 For each constraint equation $a \cdot x=b$, where a is a row of $A e q$, the algorithm computes the lower and upper bounds of the linear combination $a \cdot x$ as $r l b$ and rub if the lower and upper bounds are finite. If either $r l b$ or rub equals b, the constraint is called a forcing constraint. The algorithm sets each variable corresponding to a nonzero coefficient of $a \cdot x$ equal its upper or lower bound, depending on the forcing constraint. The algorithm then deletes the columns corresponding to these variables and deletes the rows corresponding to the forcing constraints.

Using the Simplex Algorithm

To use the simplex method, set 'LargeScale' to 'off' and 'Simplex' to 'on' in options.

```
options = optimset('LargeScale', 'off', 'Simplex', 'on')
```

Then call the function linprog with the options input argument. See the reference page for linprog for more information.
linprog returns empty output arguments for x and fval if it detects infeasibility or unboundedness in the preprocessing procedure. linprog returns the current point when it

- Exceeds the maximum number of iterations
- Detects that the problem is infeasible or unbounded in phases 1 or 2

When the problem is unbounded, linprog returns x and fval in the unbounded direction.

Basic and Nonbasic Variables

This section defines the terms basis, nonbasis, and basic feasible solutions for a linear programming problem. The definition assumes that the problem is given in the following standard form:

$$
\min _{x} f^{T} x \quad \text { such that } \quad \begin{aligned}
& A \cdot x=b \\
& \\
& \\
& l b \leq x \leq u b
\end{aligned}
$$

(Note that A and b are not the matrix and vector defining the inequalities in the original problem.) Assume that A is an m-by- n matrix, of rank m $<n$, whose columns are $\left\{a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right\}$. Suppose that $\left[a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}}\right\}$ is a basis for the column space of A, with index set $B=\left\{i_{1}, i_{2}, \ldots, i_{\mathrm{m}}\right\}$, and that N $=\{1,2, \ldots, \mathrm{n}\} \backslash B$ is the complement of B. The submatrix A_{B} is called a basis and the complementary submatrix A_{N} is called a nonbasis. The vector of basic variables is x_{B} and the vector of nonbasic variables is x_{N}. At each iteration in phase 2, the algorithm replaces one column of the current basis with a column of the nonbasis and updates the variables x_{B} and x_{N} accordingly.

If x is a solution to $A \cdot x=b$ and all the nonbasic variables in x_{N} are equal to either their lower or upper bounds, x is called a basic solution. If, in addition, the basic variables in x_{B} satisfy their lower and upper bounds, so that x is a feasible point, x is called a basic feasible solution.

References

[1] Chvatal, Vasek, Linear Programming, W. H. Freeman and Company, 1983.
[2] Bixby, Robert E., "Implementing the Simplex Method: The Initial Basis," ORSA Journal on Computing, Vol. 4, No. 3, 1992.
[3] Andersen, Erling D. and Knud D. Andersen, "Presolving in Linear Programming," Mathematical Programming, Vol. 71, pp. 221-245, 1995.

Multiobjective Optimization

The rigidity of the mathematical problem posed by the general optimization formulation given in GP (Equation 3-1) is often remote from that of a practical design problem. Rarely does a single objective with several hard constraints adequately represent the problem being faced. More often there is a vector of objectives $F(x)=\left\{F_{1}(x), F_{2}(x), \ldots, F_{m}(x)\right\}$ that must be traded off in some way. The relative importance of these objectives is not generally known until the system's best capabilities are determined and tradeoffs between the objectives fully understood. As the number of objectives increases, tradeoffs are likely to become complex and less easily quantified. There is much reliance on the intuition of the designer and his or her ability to express preferences throughout the optimization cycle. Thus, requirements for a multiobjective design strategy are to enable a natural problem formulation to be expressed, yet to be able to solve the problem and enter preferences into a numerically tractable and realistic design problem.

This section includes

- An introduction to multiobjective optimization, which looks at a number of alternative methods
- A discussion of the goal attainment method, which can be posed as a nonlinear programming problem
- Algorithm improvements to the SQP method, for use with the goal attainment method

Introduction

Multiobjective optimization is concerned with the minimization of a vector of objectives $F(x)$ that can be the subject of a number of constraints or bounds.

```
minimize \(F(x)\)
    \(x \in \Re^{n}\)
\[
\begin{array}{lc}
G_{i}(x)=0 & i=1, \ldots, m_{e} \\
G_{i}(x) \leq 0 & i=m_{e}+1, \ldots, m \\
x_{l} \leq x \leq x_{u} & \tag{3-44}
\end{array}
\]
```

Note that, because $F(x)$ is a vector, if any of the components of $F(x)$ are competing, there is no unique solution to this problem. Instead, the concept
of noninferiority [41] (also called Pareto optimality [4] and [6]) must be used to characterize the objectives. A noninferior solution is one in which an improvement in one objective requires a degradation of another. To define this concept more precisely, consider a feasible region, Ω, in the parameter space x is an element of the n-dimensional real numbers $x \in \Re^{n}$ that satisfies all the constraints, i.e.,

$$
\begin{equation*}
\Omega=\left\{x \in \Re^{n}\right\} \tag{3-45}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
g_{i}(x)=0 & i=1, \ldots, m_{e} \\
g_{i}(x) \leq 0 & i=m_{e}+1, \ldots, m \\
x_{l} \leq x \leq x_{u} &
\end{array}
$$

This allows definition of the corresponding feasible region for the objective function space Λ.

$$
\begin{equation*}
\Lambda=\left\{y \in \Re^{m}\right\} \tag{3-46}
\end{equation*}
$$

The performance vector, $F(x)$, maps parameter space into objective function space as is represented for a two-dimensional case in Figure 3-7, Mapping from Parameter Space into Objective Function Space.

Figure 3-7: Mapping from Parameter Space into Objective Function Space

A noninferior solution point can now be defined.
Definition: point $x^{*} \in \Omega$ is a noninferior solution if for some neighborhood of x^{*} there does not exist a Δx such that $\left(x^{*}+\Delta x\right) \in \Omega$ and

$$
\begin{array}{ll}
F_{i}\left(x^{*}+\Delta x\right) \leq F_{i}\left(x^{*}\right) & i=1, \ldots, m \\
F_{j}\left(x^{*}+\Delta x\right)<F_{j}\left(x^{*}\right) & \text { for some } j \tag{3-47}
\end{array}
$$

In the two-dimensional representation of Figure 3-8, Set of Noninferior Solutions, the set of noninferior solutions lies on the curve between C and D. Points A and B represent specific noninferior points.

Figure 3-8: Set of Noninferior Solutions
A and B are clearly noninferior solution points because an improvement in one objective, F_{1}, requires a degradation in the other objective, F_{2}, i.e., $F_{1 B}<F_{1 A}, F_{2 B}>F_{2 A}$.

Since any point in Ω that is not a noninferior point represents a point in which improvement can be attained in all the objectives, it is clear that such a point is of no value. Multiobjective optimization is, therefore, concerned with the generation and selection of noninferior solution points. The techniques for multiobjective optimization are wide and varied and all the methods cannot be covered within the scope of this toolbox. Subsequent sections describe some of the techniques.

Weighted Sum Strategy

The weighted sum strategy converts the multiobjective problem of minimizing the vector $F(x)$ into a scalar problem by constructing a weighted sum of all the objectives.

$$
\begin{equation*}
\underset{x \in \Omega}{\operatorname{minimize}} f(x)=\sum_{i=1}^{m} w_{i} \cdot F_{i}(x) \tag{3-48}
\end{equation*}
$$

The problem can then be optimized using a standard unconstrained optimization algorithm. The problem here is in attaching weighting coefficients to each of the objectives. The weighting coefficients do not necessarily correspond directly to the relative importance of the objectives or allow tradeoffs between the objectives to be expressed. Further, the noninferior solution boundary can be nonconcurrent, so that certain solutions are not accessible.

This can be illustrated geometrically. Consider the two-objective case in Geometrical Representation of the Weighted Sum Method on page 3-46. In the objective function space a line, $L, w^{T} F(x)=c$ is drawn. The minimization of Equation 3-48 can be interpreted as finding the value of c or which L just touches the boundary of Λ as it proceeds outwards from the origin. Selection of weights w_{1} and w_{2}, therefore, defines the slope of L, which in turn leads to the solution point where L touches the boundary of Λ.

Figure 3-9: Geometrical Representation of the Weighted Sum Method

The aforementioned convexity problem arises when the lower boundary of Λ is nonconvex as shown in Nonconvex Solution Boundary on page 3-47. In this case the set of noninferior solutions between A and B is not available.

Figure 3-10: Nonconvex Solution Boundary

ε-Constraint Method

A procedure that overcomes some of the convexity problems of the weighted sum technique is the ε-constraint method. This involves minimizing a primary objective, F_{p}, and expressing the other objectives in the form of inequality constraints

$$
\begin{equation*}
\underset{x \in \Omega}{\operatorname{minimize}} F_{p}(x) \tag{3-49}
\end{equation*}
$$

subject to $F_{i}(x) \leq \varepsilon_{i} \quad i=1, \ldots, m \quad i \neq p$

Geometrical Representation of ε-Constraint Method on page 3-48, shows a two-dimensional representation of the ε-constraint method for a two-objective problem.

Figure 3-11: Geometrical Representation of ε-Constraint Method
This approach is able to identify a number of noninferior solutions on a nonconvex boundary that are not obtainable using the weighted sum technique, for example, at the solution point $F_{1}=F_{1 s}$ and $F_{2}=\varepsilon_{2}$. A problem with this method is, however, a suitable selection of ε to ensure a feasible solution. A further disadvantage of this approach is that the use of hard constraints is rarely adequate for expressing true design objectives. Similar methods exist, such as that of Waltz [40], that prioritize the objectives. The optimization proceeds with reference to these priorities and allowable bounds of acceptance. The difficulty here is in expressing such information at early stages of the optimization cycle.

In order for the designers' true preferences to be put into a mathematical description, the designers must express a full table of their preferences and satisfaction levels for a range of objective value combinations. A procedure must then be realized that is able to find a solution with reference to this. Such methods have been derived for discrete functions using the branches of statistics known as decision theory and game theory (for a basic introduction, see [26]). Implementation for continuous functions requires suitable discretization strategies and complex solution methods. Since it is rare for the designer to know such detailed information, this method is deemed impractical for most practical design problems. It is, however, seen as a possible area for further research.

What is required is a formulation that is simple to express, retains the designers' preferences, and is numerically tractable.

Goal Attainment Method

The method described here is the goal attainment method of Gembicki [18]. This involves expressing a set of design goals, $F^{*}=\left\{F_{1}^{*}, F_{2}^{*}, \ldots, F_{m}^{*}\right\}$, which is associated with a set of objectives, $F(x)=\left\{F_{1}(x), F_{2}(x), \ldots, F_{m^{2}}(x)\right\}$. The problem formulation allows the objectives to be under- or overachieved, enabling the designer to be relatively imprecise about initial design goals. The relative degree of under- or overachievement of the goals is controlled by a vector of weighting coefficients, $w=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$, and is expressed as a standard optimization problem using the following formulation.

$$
\underset{\gamma \in \Re, x \in \Omega}{\operatorname{minimize}}{ }^{\gamma}
$$

such that $F_{i}(x)-w_{i} \gamma \leq F_{i}^{*} \quad i=1, \ldots, m$
The term $w_{i} \gamma$ introduces an element of slackness into the problem, which otherwise imposes that the goals be rigidly met. The weighting vector, w, enables the designer to express a measure of the relative tradeoffs between the objectives. For instance, setting the weighting vector w equal to the initial goals indicates that the same percentage under- or overattainment of the goals, F^{*}, is achieved. You can incorporate hard constraints into the design by setting a particular weighting factor to zero (i.e., $w_{i}=0$). The goal attainment method provides a convenient intuitive interpretation of the design problem, which is solvable using standard optimization procedures. Illustrative examples of the use of the goal attainment method in control system design can be found in Fleming ([12] and [13]).

The goal attainment method is represented geometrically in Geometrical Representation of the Goal Attainment Method on page 3-50, for the two-dimensional problem.
$\underset{\gamma, x \in \Omega}{\operatorname{minimize}} \gamma$ subject to $F_{1}(x)-w_{1} \gamma \leq F_{1}^{*}$

$$
F_{2}(x)-w_{2} \gamma \leq F_{2}^{*}
$$

Figure 3-12: Geometrical Representation of the Goal Attainment Method

Specification of the goals, $\left\{F_{1}^{*}, F_{2}^{*}\right\}$, defines the goal point, P. The weighting vector defines the direction of search from P to the feasible function space, $\Lambda(\gamma)$. During the optimization γ is varied, which changes the size of the feasible region. The constraint boundaries converge to the unique solution point $F_{1 s}, F_{2 s}$

Algorithm Improvements for the Goal Attainment Method

The goal attainment method has the advantage that it can be posed as a nonlinear programming problem. Characteristics of the problem can also be exploited in a nonlinear programming algorithm. In sequential quadratic programming (SQP), the choice of merit function for the line search is not easy because, in many cases, it is difficult to "define" the relative importance between improving the objective function and reducing constraint violations. This has resulted in a number of different schemes for constructing the merit function (see, for example, Schittkowski [38]). In goal attainment programming there might be a more appropriate merit function, which you can achieve by posing Equation 3-50 as the minimax problem

$\underset{x \in \Re^{n}}{\operatorname{minimize}} \max _{i}\left\{\Lambda_{i}\right\}$

where $\Lambda_{i}=\frac{F_{i}(x)-F_{i}^{*}}{w_{i}} \quad i=1, \ldots, m$

Following the argument of Brayton et. al. [2] for minimax optimization using SQP, using the merit function of Equation 3-41 for the goal attainment problem of Equation 3-51 gives

$$
\begin{equation*}
\psi(x, \gamma)=\gamma+\sum_{i=1}^{m} r_{i} \cdot \max \left\{0, F_{i}(x)-w_{i} \gamma-F_{i}^{*}\right\} \tag{3-52}
\end{equation*}
$$

When the merit function of Equation 3-52 is used as the basis of a line search procedure, then, although $\psi(x, \gamma)$ might decrease for a step in a given search direction, the function max Λ_{i} might paradoxically increase. This is accepting a degradation in the worst case objective. Since the worst case objective is responsible for the value of the objective function γ, this is accepting a step that ultimately increases the objective function to be minimized. Conversely, $\psi(x, \gamma)$ might increase when $\max \Lambda_{i}$ decreases, implying a rejection of a step that improves the worst case objective.

Following the lines of Brayton et. al. [2], a solution is therefore to set $\psi(x)$ equal to the worst case objective, i.e.,

$$
\begin{equation*}
\psi(x)=\max _{i} \Lambda_{i} \tag{3-53}
\end{equation*}
$$

A problem in the goal attainment method is that it is common to use a weighting coefficient equal to 0 to incorporate hard constraints. The merit function of Equation 3-53 then becomes infinite for arbitrary violations of the constraints.

To overcome this problem while still retaining the features of Equation $3-53$, the merit function is combined with that of Equation 3-42, giving the following:

$$
\psi(x)=\sum_{i=1}^{m} \begin{cases}r_{i} \cdot \max \left\{0, F_{i}(x)-w_{i} \gamma-F_{i}^{*}\right\} & \text { if } w_{i}=0 \tag{3-54}\\ \max _{i} \Lambda_{i}, \quad i=1, \ldots, m & \text { otherwise }\end{cases}
$$

Another feature that can be exploited in SQP is the objective function γ. From the KT equations (Equation 3-23) it can be shown that the approximation to the Hessian of the Lagrangian, H, should have zeros in the rows and columns associated with the variable γ. However, this property does not appear if H is initialized as the identity matrix. H is therefore initialized and maintained to have zeros in the rows and columns associated with γ.

These changes make the Hessian, H, indefinite. Therefore H is set to have zeros in the rows and columns associated with γ, except for the diagonal element, which is set to a small positive number (e.g., 1e-10). This allows use of the fast converging positive definite QP method described in "Quadratic Programming Solution" on page 3-34.

The preceding modifications have been implemented in fgoalattain and have been found to make the method more robust. However, because of the rapid convergence of the SQP method, the requirement that the merit function strictly decrease sometimes requires more function evaluations than an implementation of SQP using the merit function of Equation 3-41.

Selected Bibliography

[1] Biggs, M.C., "Constrained Minimization Using Recursive Quadratic Programming," Towards Global Optimization (L.C.W. Dixon and G.P. Szergo, eds.), North-Holland, pp 341-349, 1975.
[2] Brayton, R.K., S.W. Director, G.D. Hachtel, and L. Vidigal, "A New Algorithm for Statistical Circuit Design Based on Quasi-Newton Methods and Function Splitting," IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp 784-794, Sept. 1979.
[3] Broyden, C.G., "The Convergence of a Class of Double-rank Minimization Algorithms,"; J. Inst. Maths. Applics., Vol. 6, pp 76-90, 1970.
[4] Censor, Y., "Pareto Optimality in Multiobjective Problems," Appl. Math. Optimiz., Vol. 4, pp 41-59, 1977.
[5] Conn, N.R., N.I.M. Gould, and Ph.L. Toint, Trust-Region Methods, MPS/SIAM Series on Optimization, SIAM and MPS, 2000.
[6] Da Cunha, N.O. and E. Polak, "Constrained Minimization Under Vector-valued Criteria in Finite Dimensional Spaces," J. Math. Anal. Appl., Vol. 19, pp 103-124, 1967.
[7] Dantzig, G., Linear Programming and Extensions, Princeton University Press, Princeton, 1963.
[8] Dantzig, G., A. Orden, and P. Wolfe, "Generalized Simplex Method for Minimizing a Linear from Under Linear Inequality Constraints," Pacific J. Math. Vol. 5, pp 183-195.
[9] Davidon, W.C., "Variable Metric Method for Minimization," A.E.C. Research and Development Report, ANL-5990, 1959.
[10] Dennis, J.E., Jr., "Nonlinear least-squares," State of the Art in Numerical Analysis ed. D. Jacobs, Academic Press, pp 269-312, 1977.
[11] Dennis, J.E., Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Series in Computational Mathematics, Prentice-Hall, 1983.
[12] Fleming, P.J., "Application of Multiobjective Optimization to Compensator Design for SISO Control Systems," Electronics Letters, Vol. 22, No. 5, pp 258-259, 1986.
[13] Fleming, P.J., "Computer-Aided Control System Design of Regulators using a Multiobjective Optimization Approach," Proc. IFAC Control Applications of Nonlinear Prog. and Optim., Capri, Italy, pp 47-52, 1985.
[14] Fletcher, R., "A New Approach to Variable Metric Algorithms," Computer Journal, Vol. 13, pp 317-322, 1970.
[15] Fletcher, R., "Practical Methods of Optimization," John Wiley and Sons, 1987.
[16] Fletcher, R. and M.J.D. Powell, "A Rapidly Convergent Descent Method for Minimization," Computer Journal, Vol. 6, pp 163-168, 1963.
[17] Forsythe, G.F., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, 1976.
[18] Gembicki, F.W., "Vector Optimization for Control with Performance and Parameter Sensitivity Indices," Ph.D. Thesis, Case Western Reserve Univ., Cleveland, Ohio, 1974.
[19] Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright, "Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints," ACM Trans. Math. Software, Vol. 10, pp 282-298, 1984.
[20] Gill, P.E., W. Murray, and M.H. Wright, Numerical Linear Algebra and Optimization, Vol. 1, Addison Wesley, 1991.
[21] Gill, P.E., W. Murray, and M.H.Wright, Practical Optimization, London, Academic Press, 1981.
[22] Goldfarb, D., "A Family of Variable Metric Updates Derived by Variational Means," Mathematics of Computing, Vol. 24, pp 23-26, 1970.
[23] Grace, A.C.W., "Computer-Aided Control System Design Using Optimization Techniques," Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.
[24] Han, S.P., "A Globally Convergent Method for Nonlinear Programming," J. Optimization Theory and Applications, Vol. 22, p. 297, 1977.
[25] Hock, W. and K. Schittkowski, "A Comparative Performance Evaluation of 27 Nonlinear Programming Codes," Computing, Vol. 30, p. 335, 1983.
[26] Hollingdale, S.H., Methods of Operational Analysis in Newer Uses of Mathematics (James Lighthill, ed.), Penguin Books, 1978.
[27] Levenberg, K., "A Method for the Solution of Certain Problems in Least Squares," Quart. Appl. Math. Vol. 2, pp 164-168, 1944.
[28] Madsen, K. and H. Schjaer-Jacobsen, "Algorithms for Worst Case Tolerance Optimization," IEEE Transactions of Circuits and Systems, Vol. CAS-26, Sept. 1979.
[29] Marquardt, D., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," SIAM J. Appl. Math. Vol. 11, pp 431-441, 1963.
[30] Moré, J.J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp 105-116, 1977.
[31] NAG Fortran Library Manual, Mark 12, Vol. 4, E04UAF, p. 16.
[32] Nelder, J.A. and R. Mead, "A Simplex Method for Function Minimization," Computer J., Vol.7, pp 308-313, 1965.
[33] Nocedal, J. and S.J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer Verlag, 1999.
[34] Powell, M.J.D., "The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations," Nonlinear Programming 3, (O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.), Academic Press, 1978.
[35] Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations," Numerical Analysis, G.A.Watson ed., Lecture Notes in Mathematics, Springer Verlag, Vol. 630, 1978.
[36] Powell, M.J.D., "A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations," Numerical Methods for Nonlinear Algebraic Equations, (P. Rabinowitz, ed.), Ch.7, 1970.
[37] Powell, M.J.D., "Variable Metric Methods for Constrained Optimization," Mathematical Programming: The State of the Art, (A. Bachem, M. Grotschel and B. Korte, eds.) Springer Verlag, pp 288-311, 1983.
[38] Schittkowski, K., "NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming Problems," Annals of Operations Research, Vol. 5, pp 485-500, 1985.
[39] Shanno, D.F., "Conditioning of Quasi-Newton Methods for Function Minimization," Mathematics of Computing, Vol. 24, pp 647-656, 1970.
[40] Waltz, F.M., "An Engineering Approach: Hierarchical Optimization Criteria," IEEE Trans., Vol. AC-12, pp 179-180, April, 1967.
[41] Zadeh, L.A., "Optimality and Nonscalar-valued Performance Criteria," IEEE Trans. Automat. Contr., Vol. AC-8, p. 1, 1963.

Large-Scale Algorithms

Large-Scale Algorithms describes the methods used in the Optimization Toolbox to solve large-scale optimization problems. It consists of these sections:

| Trust-Region Methods for Nonlinear
 Minimization (p. 4-3) | Introduces the trust-regions, and
 describes the use of trust-regions
 for unconstrained nonlinear
 minimization. |
| :--- | :--- |
| Demos of Large-Scale Methods
 (p. 4-6) | Functions that demonstrate
 large-scale methods. |
| Preconditioned Conjugate Gradients | |
| (p. 4-7) | Presents an algorithm that uses
 Preconditioned Conjugate Gradients
 (PCG) for solving large symmetric |
| | positive definite systems of linear
 equations. |
| Linearly Constrained Problems | Discusses the solution of linear
 equality constrained and box
 constrained minimization problems. |
| (p. 4-9) | Describes the solution of nonlinear
 least-squares problems. |
| Quadratic Programming (p. 4-13) | Describes the solution of
 minimization problems with
 quadratic objective functions. |
| Linear Least-Squares (p. 4-14) | Describes the solution of linear
 least-squares problems. |

Large-Scale Linear Programming (p. 4-15)

Selected Bibliography (p. 4-20)

Describes the use of LIPSOL (Linear Interior Point Solver) for the solution of large-scale linear programming problems.

Lists published materials that support concepts implemented in the large-scale algorithms.

Trust-Region Methods for Nonlinear Minimization

Many of the methods used in the Optimization Toolbox are based on trust-regions, a simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained minimization problem, minimize $f(x)$, where the function takes vector arguments and returns scalars. Suppose you are at a point x in n-space and you want to improve, i.e., move to a point with a lower function value. The basic idea is to approximate f with a simpler function q, which reasonably reflects the behavior of function f in a neighborhood N around the point x. This neighborhood is the trust region. A trial step s is computed by minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

$$
\begin{equation*}
\min _{s}\{q(s) \quad s \in N\} \tag{4-1}
\end{equation*}
$$

The current point is updated to be $x+s \operatorname{if} f(x+s)<f(x)$; otherwise, the current point remains unchanged and N, the region of trust, is shrunk and the trial step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing $f(x)$ are how to choose and compute the approximation q (defined at the current point x), how to choose and modify the trust region N, and how accurately to solve the trust-region subproblem. This section focuses on the unconstrained problem. Later sections discuss additional complications due to the presence of constraints on the variables.

In the standard trust-region method ([8]), the quadratic approximation q is defined by the first two terms of the Taylor approximation to f at x; the neighborhood N is usually spherical or ellipsoidal in shape. Mathematically the trust-region subproblem is typically stated

$$
\begin{equation*}
\min \left\{\frac{1}{2} s^{T} H s+s^{T} g \text { such that }\|D s\| \leq \Delta\right\} \tag{4-2}
\end{equation*}
$$

where g is the gradient of f at the current point x, H is the Hessian matrix (the symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ is a positive scalar, and \|.\| is the 2-norm. Good algorithms exist for solving

Equation 4-2 (see [8]); such algorithms typically involve the computation of a full eigensystem and a Newton process applied to the secular equation

$$
\frac{1}{\Delta}-\frac{1}{\|s\|}=0
$$

Such algorithms provide an accurate solution to Equation 4-2. However, they require time proportional to several factorizations of H. Therefore, for large-scale problems a different approach is needed. Several approximation and heuristic strategies, based on Equation 4-2, have been proposed in the literature ([2] and [10]). The approximation approach followed in the Optimization Toolbox is to restrict the trust-region subproblem to a two-dimensional subspace S ([1] and [2]). Once the subspace S has been computed, the work to solve Equation 4-2 is trivial even if full eigenvalue/eigenvector information is needed (since in the subspace, the problem is only two-dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate gradient process described below. The toolbox assigns $S=\left\langle s_{1}, s_{2}\right\rangle$, where s_{1} is in the direction of the gradient g, and s_{2} is either an approximate Newton direction, i.e., a solution to

$$
\begin{equation*}
H \cdot s_{2}=-g \tag{4-3}
\end{equation*}
$$

or a direction of negative curvature,

$$
\begin{equation*}
s_{2}^{T} \cdot H \cdot s_{2}<0 \tag{4-4}
\end{equation*}
$$

The philosophy behind this choice of S is to force global convergence (via the steepest descent direction or negative curvature direction) and achieve fast local convergence (via the Newton step, when it exists).

A framework for the Optimization Toolbox approach to unconstrained minimization using trust-region ideas is now easy to describe:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve Equation 4-2 to determine the trial step s.

3 If $f((x+s) \leq f(x))$, then $x=x+s$.
4 Adjust Δ.
These four steps are repeated until convergence. The trust-region dimension Δ is adjusted according to standard rules. In particular, it is decreased if the trial step is not accepted, i.e., $f(x+s) \geq f(x)$. See [6] and [9] for a discussion of this aspect.

The Optimization Toolbox treats a few important special cases of f with specialized functions: nonlinear least-squares, quadratic functions, and linear least-squares. However, the underlying algorithmic ideas are the same as for the general case. These special cases are discussed in later sections.

Demos of Large-Scale Methods

From the MATLAB Help browser or the MathWorks Web site documentation, you can click the demo name to display the demo.

| circustent | Quadratic programming to find the shape of a circus
 tent |
| :--- | :--- |
| molecule | Molecule conformation solution using unconstrained
 nonlinear minimization |
| optdeblur | Image deblurring using bounded linear least squares |

Preconditioned Conjugate Gradients

A popular way to solve large symmetric positive definite systems of linear equations $H p=-g$ is the method of Preconditioned Conjugate Gradients (PCG). This iterative approach requires the ability to calculate matrix-vector products of the form $H \cdot v$ where v is an arbitrary vector. The symmetric positive definite matrix M is a preconditioner for H. That is, $M=C^{2}$ where $\mathrm{C}^{-1} \mathrm{HC}^{-1}$ is a well-conditioned matrix or a matrix with clustered eigenvalues.

Algorithm

The Optimization Toolbox uses this PCG algorithm, which it refers to as Algorithm PCG.

```
% Initializations
r = -g; p = zeros(n,1);
% Precondition
z = M\r; inner1 = r'*z; inner2 = 0; d = z;
% Conjugate gradient iteration
for k = 1:kmax
    if k > 1
        beta = inner1/inner2;
        d = z + beta*d;
    end
    w = H*d; denom = d'*w;
    if denom <= 0
        p = d/norm(d); % Direction of negative/zero curvature
        break % Exit if zero/negative curvature detected
    else
        alpha = inner1/denom;
        p = p + alpha*d;
        r = r - alpha*w;
    end
    z = M\r;
    if norm(z) <= tol % Exit if Hp=-g solved within tolerance
        break
    end
    inner2 = inner1;
    inner1 = r'*z;
end
```

In a minimization context, you can assume that the Hessian matrix H is symmetric. However, H is guaranteed to be positive definite only in the neighborhood of a strong minimizer. Algorithm PCG exits when a direction of negative (or zero) curvature is encountered, i.e., $d^{T} H d \leq 0$. The PCG output direction, p, is either a direction of negative curvature or an approximate (tol controls how approximate) solution to the Newton system $H p=-g$. In either case p is used to help define the two-dimensional subspace used in the trust-region approach discussed in "Trust-Region Methods for Nonlinear Minimization" on page 4-3.

Linearly Constrained Problems

Linear constraints complicate the situation described for unconstrained minimization. However, the underlying ideas described previously can be carried through in a clean and efficient way. The large-scale methods in the Optimization Toolbox generate strictly feasible iterates:

- A projection technique is used for linear equality constraints.
- Reflections are used with simple box constraints.

Linear Equality Constraints

The general linear equality constrained minimization problem can be written

$$
\begin{equation*}
\min \{f(x) \text { such that } A x=b\} \tag{4-5}
\end{equation*}
$$

where A is an m-by-n matrix ($m \leq n$). The Optimization Toolbox preprocesses A to remove strict linear dependencies using a technique based on the LU-factorization of A^{T} [6]. Here A is assumed to be of rank m.

The method used to solve Equation 4-5 differs from the unconstrained approach in two significant ways. First, an initial feasible point x_{0} is computed, using a sparse least-squares step, so that $A x_{0}=b$. Second, Algorithm PCG is replaced with Reduced Preconditioned Conjugate Gradients (RPCG), see [6], in order to compute an approximate reduced Newton step (or a direction of negative curvature in the null space of A). The key linear algebra step involves solving systems of the form

$$
\left[\begin{array}{cc}
C & \tilde{A}^{T} \tag{4-6}\\
\tilde{A} & 0
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
$$

where \tilde{A} approximates A (small nonzeros of A are set to zero provided rank is not lost) and C is a sparse symmetric positive-definite approximation to H, i.e., $C=H$. See [6] for more details.

Box Constraints

The box constrained problem is of the form

$$
\begin{equation*}
\min \{f(x) \text { such that } l \leq x \leq u\} \tag{4-7}
\end{equation*}
$$

where l is a vector of lower bounds, and u is a vector of upper bounds. Some (or all) of the components of l can be equal to $-\infty$ and some (or all) of the components of u can be equal to ∞. The method generates a sequence of strictly feasible points. Two techniques are used to maintain feasibility while achieving robust convergence behavior. First, a scaled modified Newton step replaces the unconstrained Newton step (to define the two-dimensional subspace S). Second, reflections are used to increase the stepsize.

The scaled modified Newton step arises from examining the Kuhn-Tucker necessary conditions for Equation 4-7,

$$
\begin{equation*}
(D(x))^{-2} g=0 \tag{4-8}
\end{equation*}
$$

where

$$
D(x)=\operatorname{diag}\left(\left|v_{k}\right|^{-\frac{1}{2}}\right)
$$

and the vector $v(x)$ is defined below, for each $1 \leq i \leq n$:

- If $g_{i}<0$ and $u_{i}<\infty$ then $v_{i}=x_{i}-u_{i}$
- If $g_{i} \geq 0$ and $l_{i}>-\infty$ then $v_{i}=x_{i}-l_{i}$
- If $g_{i}<0$ and $u_{i}=\infty$ then $v_{i}=-1$
- If $g_{i} \geq 0$ and $l_{i}=-\infty$ then $v_{i}=1$

The nonlinear system Equation 4-8 is not differentiable everywhere. Nondifferentiability occurs when $v_{i}=0$. You can avoid such points by maintaining strict feasibility, i.e., restricting $l<x<u$.

The scaled modified Newton step s_{k} for the nonlinear system of equations given by Equation 4-8 is defined as the solution to the linear system

$$
\begin{equation*}
\hat{M} D s^{N}=-\hat{g} \tag{4-9}
\end{equation*}
$$

at the k th iteration, where

$$
\begin{equation*}
\hat{g}=D^{-1} g=\operatorname{diag}\left(|v|^{\frac{1}{2}}\right) g \tag{4-10}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{M}=D^{-1} H D^{-1}+\operatorname{diag}(g) J^{v} \tag{4-11}
\end{equation*}
$$

Here J^{v} plays the role of the Jacobian of $|v|$. Each diagonal component of the diagonal matrix J^{v} equals $0,-1$, or 1 . If all the components of l and u are finite, $J^{v}=\operatorname{diag}(\operatorname{sign}(g))$. At a point where $g_{i}=0, v_{i}$ might not be differentiable. $J_{i i}^{v}=0$ is defined at such a point. Nondifferentiability of this type is not a cause for concern because, for such a component, it is not significant which value v_{i} takes. Further, $\left|v_{i}\right|$ will still be discontinuous at this point, but the function $\left|v_{i}\right| \cdot g_{i}$ is continuous.

Second, reflections are used to increase the stepsize. A (single) reflection step is defined as follows. Given a step p that intersects a bound constraint, consider the first bound constraint crossed by p; assume it is the i th bound constraint (either the i th upper or i th lower bound). Then the reflection step $p^{R}=p$ except in the i th component, where $p_{i}^{R}=-p_{i}$.

Nonlinear Least-Squares

An important special case for $f(x)$ is the nonlinear least-squares problem

$$
\begin{equation*}
f(x)=\frac{1}{2} \sum_{i} f_{i}^{2}(x)=\frac{1}{2}\|F(x)\|_{2}^{2} \tag{4-12}
\end{equation*}
$$

where $F(x)$ is a vector-valued function with component i of $F(x)$ equal to $f_{i}(x)$. The basic method used to solve this problem is the same as in the general case described in "Trust-Region Methods for Nonlinear Minimization" on page 4-3. However, the structure of the nonlinear least-squares problem is exploited to enhance efficiency. In particular, an approximate Gauss-Newton direction, i.e., a solution s to

$$
\begin{equation*}
\min \|J s+F\|_{2}^{2} \tag{4-13}
\end{equation*}
$$

(where J is the Jacobian of $F(x)$) is used to help define the two-dimensional subspace S. Second derivatives of the component function $f_{i}(x)$ are not used.

In each iteration the method of preconditioned conjugate gradients is used to approximately solve the normal equations, i.e.,

$$
J^{T} J s=-J^{T} F
$$

although the normal equations are not explicitly formed.

Quadratic Programming

In this case the function $f(x)$ is the quadratic equation

$$
q(x)=\frac{1}{2} x^{T} H x+f^{T} x
$$

The subspace trust-region method is used to determine a search direction. However, instead of restricting the step to (possibly) one reflection step, as in the nonlinear minimization case, a piecewise reflective line search is conducted at each iteration. See [5] for details of the line search.

Linear Least-Squares

In this case the function $f(x)$ to be solved is

$$
f(x)=\frac{1}{2}\|C x+d\|_{2}^{2}
$$

The algorithm generates strictly feasible iterates converging, in the limit, to a local solution. Each iteration involves the approximate solution of a large linear system (of order n, where n is the length of x). The iteration matrices have the structure of the matrix C. In particular, the method of preconditioned conjugate gradients is used to approximately solve the normal equations, i.e.,

$$
C^{T} C x=-C^{T} d
$$

although the normal equations are not explicitly formed.
The subspace trust-region method is used to determine a search direction. However, instead of restricting the step to (possibly) one reflection step, as in the nonlinear minimization case, a piecewise reflective line search is conducted at each iteration, as in the quadratic case. See [5] for details of the line search. Ultimately, the linear systems represent a Newton approach capturing the first-order optimality conditions at the solution, resulting in strong local convergence rates.

Large-Scale Linear Programming

Linear programming is defined as

$$
\min f^{T} x \quad \text { such that }\left(\begin{array}{c}
\text { Aeq } \cdot x=\text { beq } \tag{4-14}\\
\text { Aineq } \cdot x \leq b i n e q \\
l \leq x \leq u
\end{array}\right)
$$

The large-scale method is based on LIPSOL ([11]), which is a variant of Mehrotra's predictor-corrector algorithm ([7]), a primal-dual interior-point method.

This section continues with descriptions of

- The main algorithm
- Preprocessing steps

Main Algorithm

The algorithm begins by applying a series of preprocessing steps (see "Preprocessing" on page 4-18). After preprocessing, the problem has the form

$$
\begin{equation*}
\min f^{T} x \quad \text { such that }\binom{A \cdot x=b}{0 \leq x \leq u} \tag{4-15}
\end{equation*}
$$

The upper bounds constraints are implicitly included in the constraint matrix A. With the addition of primal slack variables s, Equation $4-15$ becomes

$$
\min f^{T} x \quad \text { such that }\left(\begin{array}{c}
A \cdot x=b \\
x+s=u \\
x \geq 0, s \geq 0
\end{array}\right)
$$

which is referred to as the primal problem: x consists of the primal variables and s consists of the primal slack variables. The dual problem is

$$
\max b^{T} y-u^{T} w \quad \text { such that } \quad A^{T} \cdot y-w+z=f
$$

where y and w consist of the dual variables and z consists of the dual slacks. The optimality conditions for this linear program, i.e., the primal Equation 4-16 and the dual Equation 4-17, are

$$
\begin{gather*}
F(x, y, z, s, w)=\left(\begin{array}{c}
A \cdot x-b \\
x+s-u \\
A^{T} \cdot y-w+z-f \\
x_{i} z_{i} \\
s_{i} w_{i}
\end{array}\right)=0 \\
x \geq 0, \quad z \geq 0, s \geq 0, w \geq 0 \tag{4-18}
\end{gather*}
$$

where $x_{i} z_{i}$ and $s_{i} w_{i}$ denote component-wise multiplication.
The quadratic equations $x_{i} z_{i}=0$ and $s_{i} w_{i}=0$ are called the complementarity conditions for the linear program; the other (linear) equations are called the feasibility conditions. The quantity

$$
x^{T} z+s^{T} w
$$

is the duality gap, which measures the residual of the complementarity portion of F when $(x, z, s, w) \geq 0$.

The algorithm is a primal-dual algorithm, meaning that both the primal and the dual programs are solved simultaneously. It can be considered a Newton-like method, applied to the linear-quadratic system $F(x, y, z, s, w)=0$ in Equation 4-18, while at the same time keeping the iterates x, z, w, and s positive, thus the name interior-point method. (The iterates are in the strictly interior region represented by the inequality constraints in Equation 4-16.)

The algorithm is a variant of the predictor-corrector algorithm proposed by Mehrotra. Consider an iterate $v=[x ; y ; z ; s ; w]$, where $[x ; z ; s ; w]>0$. First compute the so-called prediction direction

$$
\Delta v_{p}=-\left(F^{T}(v)\right)^{-1} F(v)
$$

which is the Newton direction; then the so-called corrector direction

$$
\Delta v_{c}=-\left(F^{T}(v)\right)^{-1}\left(F\left(v+\Delta v_{p}\right)\right)-\mu \hat{e}
$$

where $\mu>0$ is called the centering parameter and must be chosen carefully.ê is a zero-one vector with the ones corresponding to the quadratic equations in $F(v)$,i.e., the perturbations are only applied to the complementarity conditions, which are all quadratic, but not to the feasibility conditions, which are all linear. The two directions are combined with a step length parameter $\alpha>0$ and update v to obtain the new iterate v^{+}

$$
v^{+}=v+\alpha\left(\Delta v_{p}+\Delta v_{c}\right)
$$

where the step length parameter α is chosen so that

$$
v^{+}=\left[x^{+} ; y^{+} ; z^{+} ; s^{+} ; w^{+}\right]
$$

satisfies

$$
\left[x^{+} ; z^{+} ; s^{+} ; w^{+}\right]>0
$$

In solving for the preceding steps, the algorithm computes a (sparse) direct factorization on a modification of the Cholesky factors of $A \cdot A^{T}$. If A has dense columns, it instead uses the Sherman-Morrison formula, and if that solution is not adequate (the residual is too large), it uses preconditioned conjugate gradients to find a solution.

The algorithm then repeats these steps until the iterates converge. The main stopping criteria is a standard one

where

$$
\begin{aligned}
& r_{b}=A x-b \\
& r_{f}=A^{T} y-w+z-f \\
& r_{u}=x+s-u
\end{aligned}
$$

are the primal residual, dual residual, and upper-bound feasibility respectively, and

$$
f^{T} x-b^{T} y+u^{T} w
$$

is the difference between the primal and dual objective values, and tol is some tolerance. The sum in the stopping criteria measures the total relative errors in the optimality conditions in Equation 4-18.

Preprocessing

A number of preprocessing steps occur before the actual iterative algorithm begins. The resulting transformed problem is one where

- All variables are bounded below by zero.
- All constraints are equalities.
- Fixed variables, those with equal upper and lower bounds, are removed.
- Rows of all zeros in the constraint matrix are removed.
- The constraint matrix has full structural rank.
- Columns of all zeros in the constraint matrix are removed.
- When a significant number of singleton rows exist in the constraint matrix, the associated variables are solved for and the rows removed.

While these preprocessing steps can do much to speed up the iterative part of the algorithm, if the Lagrange multipliers are required, the preprocessing steps must be undone since the multipliers calculated during the algorithm are for the transformed problem, and not the original. Thus, if the multipliers are not requested, this transformation back is not computed, and might save some time computationally.

Selected Bibliography

[1] Branch, M.A., T.F. Coleman, and Y. Li, "A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems," SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp 1-23, 1999.
[2] Byrd, R.H., R.B. Schnabel, and G.A. Shultz, "Approximate Solution of the Trust Region Problem by Minimization over Two-Dimensional Subspaces," Mathematical Programming, Vol. 40, pp 247-263, 1988.
[3] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp 189-224, 1994.
[4] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp 418-445, 1996.
[5] Coleman, T.F. and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on some of the Variables," SIAM Journal on Optimization, Vol. 6, Number 4, pp 1040-1058, 1996.
[6] Coleman, T.F. and A. Verma, "A Preconditioned Conjugate Gradient Approach to Linear Equality Constrained Minimization," submitted to Computational Optimization and Applications.
[7] Mehrotra, S., "On the Implementation of a Primal-Dual Interior Point Method," SIAM Journal on Optimization, Vol. 2, pp 575-601, 1992.
[8] Moré, J.J. and D.C. Sorensen, "Computing a Trust Region Step," SIAM Journal on Scientific and Statistical Computing, Vol. 3, pp 553-572, 1983.
[9] Sorensen, D.C., "Minimization of a Large Scale Quadratic Function Subject to an Ellipsoidal Constraint," Department of Computational and Applied Mathematics, Rice University, Technical Report TR94-27, 1994.
[10] Steihaug, T., "The Conjugate Gradient Method and Trust Regions in Large Scale Optimization," SIAM Journal on Numerical Analysis, Vol. 20, pp 626-637, 1983.
[11] Zhang, Y., "Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment," Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD, Technical Report TR96-01, July, 1995.

Optimization Tool

Getting Started with the
Optimization Tool (p. 5-2)

Selecting a Solver (p. 5-5)

Defining the Problem (p. 5-7)

Running a Problem in the
Optimization Tool (p. 5-27)
Specifying the Options (p. 5-29)
Getting Help in the Optimization Tool (p. 5-41)
Importing and Exporting Your Work (p. 5-42)

Optimization Tool Example Using the lsqlin Solver (p. 5-46)

Understand the Optimization Tool-how to open the tool and steps for use

Select a solver for your optimization problem
Set problem definition fields specific to the selected solver
Run the solver and view results

Set option values
Access help within the Optimization Tool

Start a new problem, import, export, and generate an M-file of your problem and options
An example using the Optimization Tool

Getting Started with the Optimization Tool

The Optimization Tool is a GUI for solving optimization problems. With the Optimization Tool, you select a solver from a list and set up your problem visually. If you are familiar with the optimization problem you want to solve, the Optimization Tool lets you select a solver, specify the optimization options, and run your problem. You can also import and export data from the MATLAB workspace, and generate M-files containing your configuration for the solver and options. Chapter 2, "Tutorial" provides information on how to use the toolbox functions and examples for solving different optimization problems.

Opening the Optimization Tool

To open the tool, type
optimtool
in the Command Window. This opens the Optimization Tool, as shown in the following figure.

The reference page for the Optimization Tool provides variations for starting the optimtool function.

Steps for Using the Optimization Tool

This is a summary of the steps to set up your optimization problem and view results with the Optimization Tool.

Selecting a Solver

Select the solver that best describes the problem you want to optimize. The selection of solvers corresponds to the solver functions available in the Optimization Toolbox.

| fmincon - Constrained nonlinear minimization | |
| :--- | :--- |
| bintprog - Binary integer programming | |
| fgoalattain - Multiobjective goal attainment | |
| fminbnd - Single-variable nonlinear minimization wit | |
| fmincon - Constrained nonlinear minimization | |
| fminimax - Minimax optimization | |
| fminsearch - Unconstrained nonlinear minimization | |
| fminunc - Unconstrained nonlinear minimization | |
| fseminf - Semi-infinite minimization | |

The following table lists the available solvers with a summary of the optimization problem each solves. It links to the corresponding function reference page. In addition to describing how to use the function in the Command Window, the reference pages contain more information about each solver, including the equation for the optimization problem solved and a description of the algorithm used for implementing the solver.

| Solver | Description |
| :--- | :--- |
| bintprog | Solve a binary integer programming problem |
| fgoalattain | Solve a multiobjective goal attainment optimization
 problem |
| fminbnd | Find the minimum of a single-variable function on a
 fixed interval |
| fmincon (default) | Find a minimum of a constrained nonlinear
 multivariable function |
| fminimax | Find the minimum of the worst-case value of a set of
 multivariable functions |
| fminsearch | Find the minimum of an unconstrained nonlinear
 multivariable function using a derivative-free
 method |

| Solver | Description |
| :--- | :--- |
| fminunc | Find a minimum of an unconstrained nonlinear
 multivariable function |
| fseminf | Find the minimum of a semi-infinitely constrained
 nonlinear multivariable function |
| fsolve | Solve a system of nonlinear equations |
| fzero | Find a root (zero) of a nonlinear equation |
| linprog | Solve a linear programming problem |
| lsqcurvefit | Solve a nonlinear curve-fitting (data-fitting) problem
 in the least-squares sense |
| lsqlin | Solve a constrained linear least-squares problem |
| lsqnonlin | Solve a nonlinear least-squares problem |
| lsqnonneg | Find the minimum of a nonnegative least-squares
 problem |
| quadprog | Solve a quadratic programming problem |

Defining the Problem

After selecting a solver, define the problem by specifying the function to minimize and other problem fields, such as the start point and constraints, that are specific to the solver selected. Select a solver from the following list for a description of the problem definition relevant to that solver.
bintprog
fgoalattain
fminbnd
fmincon (default)
fminimax
fminsearch
fminunc
fseminf
fsolve
fzero
linprog
lsqcurvefit
lsqlin
lsqnonlin
lsqnonneg
quadprog
bintprog Problem Setup

Function to Minimize

\mathbf{f} (required) is a vector containing the coefficients of the linear function you want to minimize.

Constraints

Linear inequalities of the form $A^{*} x \leq b$ are specified by the matrix \mathbf{A} and the vector \mathbf{b}.

Linear equalities of the form $A e q * x=b e q$ are specified by the matrix Aeq and the vector beq.

Start Point

Start point is the initial point (vector) for the algorithm. You can select Let algorithm choose point or set your own start point. If the start point you set is not in the feasible region, the algorithm ignores the start point entered.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the bintprog function.

fgoalattain Problem Setup

Function to Minimize

Objective function (required) is the function you want to minimize. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-13 section of the function reference page.

Derivatives specifies if the gradient is supplied in the objective function or if it should be approximated by the solver.

Start point (required) is the initial point (vector) for the algorithm.
Goals (required) is a vector of values that the objective function attempts to attain.

Weights (required) is a weighting vector to control the relative underattainment or overattainment of the objectives.

Constraints

Linear inequalities of the form $A^{*} x \leq b$ are specified by the matrix \mathbf{A} and the vector \mathbf{b}.

Linear equalities of the form $A e q * x=b e q$ are specified by the matrix Aeq and the vector beq.

Bounds are lower and upper bounds on the variables, specified as vectors.
Nonlinear constraint function defines the nonlinear constraints. Specify the function as a function handle of the form @nonlcon, where nonlcon.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-13 section of the function reference page.

Derivatives specifies whether the derivatives are supplied in the nonlinear constraint function or if they should be approximated by the solver.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the fgoalattain function.

fminbnd Problem Setup

Function to Minimize

Objective function (required) is the function you want to minimize. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-28 section of the function reference page.
$\mathbf{X 1}$ (required) is the left endpoint of the interval over which the objective function is minimized.
$\mathbf{X 2}$ (required) is the right endpoint of the interval over which the objective function is minimized.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the fminbnd function.

fmincon Problem Setup

Algorithm

Specify whether you want to use large or medium scale. For more information on the routines the Optimization Toolbox uses for these choices, see "Mediumand Large-Scale Algorithms" on page 2-7.

Function to Minimize

Objective function (required) is the function you want to minimize. Specify the function as a function handle of the form @objfun, where objfun.m is an

M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-35 section of the function reference page.

Derivatives specifies if the gradient is supplied in the objective function or if it should be approximated by the solver. With the large-scale algorithm, this field specifies whether the gradient or both the Hessian and gradient are supplied by the user in the objective function. Note that the medium-scale algorithm is used when Approximated by solver is selected, even if large scale is selected. This is because the large-scale algorithm requires that you provide exact derivatives.

Start point (required) is the initial point (vector) for the algorithm.

Constraints

You must specify at least one constraint to run the solver.
Linear inequalities of the form $A^{*} x \leq b$ are specified by the matrix \mathbf{A} and the vector \mathbf{b}.

Linear equalities of the form $A e q{ }^{*} x=b e q$ are specified by the matrix Aeq and the vector beq.

Bounds are lower and upper bounds on the variables, specified as vectors.
Nonlinear constraint function defines the nonlinear constraints. Specify the function as a function handle of the form @nonlcon, where nonlcon.m is an M-file or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-35 section of the function reference page.

Derivatives specifies whether the derivatives are supplied in the nonlinear constraint function or if they should be approximated by the solver.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the fmincon function.

fminimax Problem Setup

Function to Minimize

Objective function (required) is the vector-valued function for which you want to find a minimax solution. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-53 section of the function reference page.

Derivatives specifies if the gradient is supplied in the objective function or if it should be approximated by the solver.

Start point (required) is the initial point (vector) for the algorithm.

Constraints

Linear inequalities of the form $A^{*} x \leq b$ are specified by the matrix \mathbf{A} and the vector \mathbf{b}.

Linear equalities of the form $A e q * x=b e q$ are specified by the matrix Aeq and the vector beq.

Bounds are lower and upper bounds on the variables, specified as vectors.
Nonlinear constraint function defines the nonlinear constraints. Specify the function as a function handle of the form @nonlcon, where nonlcon.m is an M-file or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-53 section of the function reference page.

Derivatives specifies whether the derivatives are supplied in the nonlinear constraint function or if they should be approximated by the solver.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the fminimax function.

fminsearch Problem Setup

Function to Minimize

Objective function (required) is the function you want to minimize. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-65 section of the function reference page.

Start point (required) is the initial point (vector) for the algorithm.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the fminsearch function.

fminunc Problem Setup

Algorithm

Specify whether you want to use large or medium scale. For more information on the routines the Optimization Toolbox uses for these choices, see "Mediumand Large-Scale Algorithms" on page 2-7.

Function to Minimize

Objective function (required) is the function you want to minimize. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-72 section of the function reference page.

Derivatives specifies if the gradient is supplied in the objective function or if it should be approximated by the solver. With the large-scale algorithm, this field specifies whether the gradient or both the Hessian and gradient are supplied by the user in the objective function. Note that the medium-scale algorithm is used when Approximated by solver is selected, even if large scale is selected. This is because the large-scale algorithm requires that you provide exact derivatives.

Start point (required) is the initial point (vector) for the algorithm.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the fminunc function.

fseminf Problem Setup

Function to Minimize

Objective function (required) is the function you want to attain the goals specified by varying x, given a start point and a weighting vector. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-87 section of the function reference page.

Derivatives specifies if the gradient is supplied by the user in the objective function or if it should be approximated by the solver.

Start point (required) is the initial point (vector) for the algorithm.

Constraints

Number of semi-infinite constraints (required) specifies how many semi-infinite constraints are in the semi-infinite constraint function.

Semi-infinite constraint function (required) computes the vector of nonlinear inequality constraints c and a vector of nonlinear equality constraints, ceq, and ntheta semi-infinite constraints (vectors or matrices)

K1, K2, ..., Kntheta evaluated over an interval S at the point x. Specify the function as a function handle of the form @seminfcon, where seminfcon.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-87 section of the function reference page.

Linear inequalities of the form $A^{*} x \leq b$ are specified by the matrix \mathbf{A} and the vector \mathbf{b}.

Linear equalities of the form $A e q^{*} x=b e q$ are specified by the matrix Aeq and the vector beq.

Bounds are lower and upper bounds on the variables, specified as vectors.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the fseminf function.

fsolve Problem Setup

Algorithm

Specify whether you want to use large or medium-scale. Within medium scale there are three option choices: the trust-region dogleg, the Levenberg-Marquardt, or the Gauss-Newton algorithm. For more information on the routines the Optimization Toolbox uses for these choices, see "Mediumand Large-Scale Algorithms" on page 2-7.

Linear System of Equations

Objective function (required) is the function describing a system of nonlinear equations you want to solve. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page $8-102$ section of the function reference page.

Derivatives specifies if the Jacobian is supplied in the objective function or if it should be approximated by the solver.

Start point (required) is the initial point (vector) for the algorithm.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the fsolve function.

fzero Problem Setup

Function to Minimize

Equation (required) is the function whose zero is to be computed. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file, or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-117 section of the function reference page.

Interval containing zero of equation has two options. You must either enter your own interval using the fields $\mathbf{X 1}$ and $\mathbf{X 2}$ or specify a point \mathbf{X} to enable the algorithm to find an interval containing that point for you. To enter your own, select Specify interval [X1, X2] and enter the values for
$\mathbf{X 1}$ and $\mathbf{X 2}$ for which the function differs in sign. When this is selected, the algorithm assumes the objective function values at X1 and X2. An error occurs if this is not true. Alternatively, you can select Let algorithm find interval containing \mathbf{X} and enter the scalar \mathbf{X} value to have the algorithm attempt to find a zero of the objective function near \mathbf{X}.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the fzero function.

linprog Problem Setup

Algorithm

Specify whether you want to use large or medium scale. Within medium scale there are two option choices: the simplex or the active set algorithm. For more information on the routines the Optimization Toolbox uses for these choices, see "Medium- and Large-Scale Algorithms" on page 2-7.

Function to Minimize

\mathbf{f} (required) is a vector containing the coefficients of the linear function you want to minimize.

Constraints

Linear inequalities of the form $A^{*} x \leq b$ are specified by the matrix \mathbf{A} and the vector \mathbf{b}.

Linear equalities of the form $A e q * x=b e q$ are specified by the matrix Aeq and the vector beq.

Bounds are lower and upper bounds on the variables, specified as vectors.

Start Point

Start point is the initial point (vector) for the algorithm. You can select Let algorithm choose point or set your own start point. You can only set your own start point with the medium-scale active set algorithm. The default large-scale algorithm and the simplex algorithm ignore the start point entered.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the linprog function.

Isqcurvefit Problem Setup

Algorithm

Specify whether you want to use large or medium scale. Within medium scale there are two option choices: the Levenberg-Marquardt or the Gauss-Newton algorithm. For more information on the routines the Optimization Toolbox uses for these choices, see "Medium- and Large-Scale Algorithms" on page 2-7.

Function to Minimize

Objective function (required) is the function whose sum of squares you want to minimize. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file that returns a vector function value, or as an anonymous function. You must specify the input data \mathbf{X} to the objective function. For a description of this M-file, see the "Input Arguments" on page $8-135$ section of the function reference page.

Derivatives specifies if the Jacobian is supplied in the objective function or if it should be approximated by the solver.

Start point (required) is the initial point (vector) for the algorithm.
Data (required) are the input data \mathbf{X} and observed output data \mathbf{Y}. lsqcurvefit finds coefficients to best fit the nonlinear function objfun to the data.

Constraints

Bounds are lower and upper bounds on the variables, specified as a vector.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the lsqcurvefit function.

Isqlin Problem Setup

| Algorithm: Large scale | | \square |
| :---: | :---: | :---: |
| Problem | | |
| $\mathrm{C}:$ | | |
| Constraints: | | |
| Linear inequalities: $\mathrm{A}:$ | b: | |
| Linear equalities: Aeq: | beq: | |
| Bounds: Lower: | Upper: | |
| Start point: | | |
| c Let algorithm choose point | | |
| \bigcirc Specify point: | | |

Algorithm

Specify whether you want to use large or medium scale. For more information on the routines the Optimization Toolbox uses for these choices, see "Mediumand Large-Scale Algorithms" on page 2-7.

Linear System of Equations

Enter matrix \mathbf{C} (required) and vector \mathbf{d} (required) to solve the linear system $C^{*} x=d$ in the least-squares sense subject to the constraints specified.

Constraints

Linear inequalities of the form $A^{*} x \leq b$ are specified by the matrix \mathbf{A} and the vector \mathbf{b}.

Linear equalities of the form $A e q * x=b e q$ are specified by the matrix Aeq and the vector beq.

Bounds are lower and upper bounds on the variables, specified as vectors.

Start Point

Start point is the initial point (vector) for the algorithm. You can select Let algorithm choose point or set your own start point.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the lsqlin function.

Isqnonlin Problem Setup

Algorithm

Specify whether you want to use large or medium scale. Within medium scale there are two option choices: the Levenberg-Marquardt or the Gauss-Newton algorithm. For more information on the routines the Optimization Toolbox uses for these choices, see "Medium- and Large-Scale Algorithms" on page 2-7.

Function to Minimize

Objective function (required) is the nonlinear vector function whose sum of squares you want to minimize. Specify the function as a function handle of the form @objfun, where objfun.m is an M-file that returns a vector function value or as an anonymous function. For a description of this M-file, see the "Input Arguments" on page 8-159 section of the function reference page.

Derivatives specifies if the Jacobian is supplied in the objective function or if it should be approximated by the solver.

Start point (required) is the initial point (vector) for the algorithm.

Constraints

Bounds are lower and upper bounds on the variables, specified as a vector.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the lsqnonlin function.

Isqnonneg Problem Setup

Linear System of Equations

Enter matrix \mathbf{C} and vector \mathbf{d} that solves the system $C^{*} x-d$ in the least-squares sense subject to $x \geq 0$. Both \mathbf{C} and \mathbf{d} must be real.

Start Point

Start point is the initial point (vector) for the algorithm. You can select Let algorithm choose point or set your own start point.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the lsqnonneg function.

quadprog Problem Setup

| Algorithm: Large scale | | \checkmark |
| :---: | :---: | :---: |
| Problem | | |
| H: | $f:$ | |
| Constraints: | | |
| Linear inequalities: $\quad \mathrm{A}: \square$ | | |
| Linear equalities: Aeq: \square beq: | | |
| Bounds: Lower: | Upper: | |
| Start point:
 © Let algorithm choose point | | |
| | | |
| C Specify point: | | |

Algorithm

Specify whether you want to use large or medium scale. For more information on the routines the Optimization Toolbox uses for these choices, see "Mediumand Large-Scale Algorithms" on page 2-7.

Function to Minimize

Enter matrix \mathbf{H} (required) and vector \mathbf{f} (required) to minimize $1 / 2 * x^{*} H^{*} x+$ $f^{\prime *} x$ subject to the constraints specified.

Constraints

With the medium-scale algorithm selected, the Linear inequalities of the form $A^{*} x \leq b$ are specified by the matrix \mathbf{A} and the vector \mathbf{b}.

Linear equalities of the form $A e q * x=b e q$ are specified by the matrix Aeq and the vector beq.

Bounds are lower and upper bounds on the variables, specified as vectors.

Start Point

Start point is the initial point (vector) for the algorithm. You can select Let algorithm choose point or set your own start point.

Function Equivalent

For the function that corresponds to this solver and more information on the problem definition, see the quadprog function.

Running a Problem in the Optimization Tool

After defining your problem and specifying the options, you are ready to run the solver.

To run the selected solver, click the Start button. For most solvers, as the algorithm runs, the Current iteration field updates. This field does not update for solvers for which the current iteration does not apply.

Pausing and Stopping the Algorithm

While the algorithm is running, you can

- Click Pause to temporarily suspend the algorithm. To resume the algorithm using the current iteration at the time you paused, click Resume.
- Click Stop to stop the algorithm. The Run solver and view results window displays information for the current iteration at the moment you clicked Stop.

Viewing Results

When the algorithm terminates, the Run solver and view results window displays the reason the algorithm terminated. To clear the Run solver and view results window between runs, click Clear Results.

To save your work, export the information from optimtool to the MATLAB workspace or to an M-file. For more information, see "Importing and Exporting Your Work" on page 5-42.

Displaying Plots

In addition to the Run solver and view results window, you can also display measures of progress while the algorithm executes by generating plots. Each plot selected draws a separate axis in the figure window. You can select a predefined plot function from the Optimization Tool, or you can write your own. For more information on what plot functions are available, see "Plot Functions" on page 5-38.

Final Point

The Final point updates to show the coordinates of the final point when the algorithm terminated.

Specifying the Options

To specify options for the selected solver, use the Options pane. The options listed here correspond to the options structure defined by the optimset function available for a solver. For more information on what options are available for a particular solver, see "Optimization Options" on page 6-8.

Only the options relevant to your problem are available.

- "Stopping Criteria" on page 5-29
- "Function Value Check" on page 5-31
- "User-Supplied Derivatives" on page 5-31
- "Approximated Derivatives" on page 5-32
- "Algorithm Settings" on page 5-33
- "Multiobjective Problem Settings" on page 5-36
- "Inner Iteration Stopping Criteria" on page 5-36
- "Plot Functions" on page 5-38
- "Output function" on page 5-39
- "Display to Command Window" on page 5-39

Stopping Criteria

Stopping criteria determines what causes the algorithm to terminate. The Optimization Tool uses the following criteria:

- Max iterations specifies the maximum number of iterations the algorithm performs.
- Max function evaluations specifies the maximum number of evaluations of the objective and constraint functions the algorithm performs.
- Max nodes specifies the maximum number nodes the bintprog solver explores.
- Time limit (seconds) specifies the maximum time in seconds the algorithm runs before stopping. This also includes any specified pause time for the algorithm.
- X tolerance specifies the termination tolerance for X.
- Function tolerance specifies the termination tolerance for the objective function value.
- Nonlinear constraint tolerance specifies the termination tolerance for the maximum nonlinear constraint violation.

The graphic above shows the stopping criteria options available for the fmincon default solver.

Function Value Check

When selected, Function value check examines the values returned by the user-supplied objective function, or nonlinear constraint function, and produces an error if the user-supplied function returns Inf, NaN , or complex values.
\square Function value check
■ Error if user-supplied function returns Inf, NaN or complex

Note Function value check does not produce an error for Inf when used with fminbnd, fminsearch, or fzero, which handle Inf appropriately.

User-Supplied Derivatives

Selecting Validate user-supplied derivatives performs an evaluation of the derivatives in the objective and nonlinear constraint functions. At runtime, a warning message is displayed if the computed and provided derivatives disagree.

Jacobian sparsity pattern specifies the sparsity pattern (locations of the nonzeros) of the Jacobian for finite differencing. Given that you provide this sparsity pattern, the solver approximates the Jacobian using sparse finite differences. If the structure is unknown, you can set this option to a dense matrix (the default value), but note that this can be expensive for large problems, so it is best to determine the sparsity structure.

Jacobian multiply function specifies the function handle for a multiply function. This function computes Jacobian-matrix products without forming the Jacobian. Note that this option is only available when the Derivatives field is set to Jacobian supplied in objective function.

Hessian sparsity pattern specifies the sparsity pattern (locations of the nonzeros) of the Hessian for finite differencing. Given that you provide this sparsity pattern, the solver approximates the Hessian using sparse finite differences of the gradient. If the structure is unknown, you can set this
option to a dense matrix (the default value). Note that this can be expensive for large problems, so it is best to determine the sparsity structure.

Hessian multiply function specifies the function handle for a multiply function. This function computes Hessian-matrix products without forming the Hessian, but note that this option is only available when the Derivatives field is set to Gradient and Hessian supplied in objective function.

The graphic above shows the user-supplied derivative options available for the fmincon default solver.

Approximated Derivatives

When finite differences are used to approximate the derivatives, you can adjust the following options:

- Minimum perturbation for specifying the minimum change in variables for finite differencing derivative approximations.
- Maximum perturbation for specifying the maximum change in variables for finite differencing derivative approximations.

For the medium-scale algorithm with the fminunc solver, you can set the Initial quasi-Newton Hessian matrix to a Scaled identity matrix, the Identity matrix, or you can supply your own.

The graphic above shows the approximated derivative options available for the fmincon default solver.

Algorithm Settings

Options within the Subproblem method include:

- Select Cholesky factorization to use a direct linear solver.
- To use preconditioned conjugate gradient, select the Preconditioned CG button and enter a positive scalar in the Preconditioner bandwidth. The default value is 0 , meaning there is only one diagonal in the preconditioner.

Set Typical \mathbf{X} values to specify the typical magnitude of the variables.

Specify Hessian update to select the method for choosing the Quasi-Newton update in the medium-scale algorithm for the fminunc solver. The choices are bfgs, dfp, or steepest decent. See "Hessian Update" on page 3-11 for a description of these methods.

The following Relative line search bound options are available for the medium-scale algorithm with the fgoalattain, fmincon, fminimax, and fseminf solvers:

- Use Bounds to define a relative bound on the line search step length. This value is a real nonnegative scalar value that controls the magnitude of displacements in x when the solver takes large steps.
- Use Number of iterations to use bound to specify the number of iterations for which the bound specified in Bounds should be active.

Set Line search type to quadratic/cubic or cubic to specify the line search algorithm choice.

Set Merit function to multiobjective to use the goal attainment/minimax merit function or single objective to use the fmincon solver merit function.

Specify Node search strategy to determine how the bintprog solver explores the search tree. Choices are best node or depth first.

Select the Branch strategy for the bintprog solver to choose the strategy the algorithm uses to select the branch variable in the search tree-see the section on Branching. The choices are:

- maximum integer infeasibility - Choose the variable whose value is closest to 0.5 (the default).
- minimum integer infeasibility - Choose the variable whose value is closest to 0 or 1 but not equal to 0 or 1 .

Set X integer tolerance for the bintprog solver to specify the tolerance within which the value of a variable is considered to be integeral.

| \square Algorithm settings | | |
| :---: | :---: | :---: |
| Subproblem method: | \bigcirc Cholesky factorization | |
| | C. Preconditioned CG | |
| | Preconditioner bandwidth: 0 | |
| Typical X values: | C Use default: ones(numberOfVariables, 1) | |
| | C specify: | |
| Hessian update: | BFGS | \square |
| Relative line search bound: | | |
| Bounds: | 6 None | |
| C Specify: | | |
| Number of iterations | | |
| to use bound: | ¢ Use default | |
| C specify: | | |
| Line search type: | quadratic/cubic | 7 |
| Merit function: | multiobjective | 7 |
| Node search strategy: | best node | 7 |
| Branch strategy: | maximum integer infeasibility | 7 |
| X integer tolerance: | c Use default: | |
| | C specify: | |

The graphic above shows the algorithm settings available for the fmincon default solver.

Multiobjective Problem Settings

For the fminimax solver, specify Number of objectives to maximize minimum absolute values to set the number of function values used to minimize the worst case absolute values.

For the fgoalattain solver, specify Number of goals to achieve exactly to set the number of objectives required for the objective function to equal the goal specified in Goals.

The graphic above shows the multiobjective options available for the fminimax solver.

Inner Iteration Stopping Criteria

Preconditioned conjugate gradient specifies the following in the large-scale algorithm:

- Maximum iterations is the maximum number of preconditioned conjugate gradient iterations.
- Tolerance is the termination tolerance on the preconditioned conjugate gradient iteration.

Linear programming relaxation specifies the following with the bintprog solver:

- Maximum iterations is the maximum number of iterations in the linear programming relaxation subproblem.
- Function tolerance is the termination tolerance on the function value for the linear programming relaxation subproblem.

SQP maximum iterations specifies the maximum number of iterations allowed during the solution of the quadratic program subproblem when the medium-scale algorithm is selected.

The graphic above shows the inner iteration stopping criteria options available for the fmincon default solver.

Plot Functions

You can select a plot function to easily plot various measures of progress while the algorithm executes. Each plot selected draws a separate axis in the figure window. If available for the solver selected, the Stop button in the Run solver and view results window to interrupt a running solver. You can select a predefined plot function from the Optimization Tool, or you can select Custom function to write your own. Plot functions not relevant to the solver selected are grayed out. The following lists the available plot functions:

- Current point - Select to show a bar plot of the point at the current iteration.
- Function count - Select to plot the number of function evaluations at each iteration.
- Function value - Select to plot the function value at each iteration.
- Norm of residuals - Select to show a bar plot of the current norm of residuals at the current iteration.
- Max constraint - Select to plot the maximum constraint violation value at each iteration.
- Current step - Select to plot the algorithm step size at each iteration.
- First order optimality - Select to plot the violation of the optimality conditions for the solver at each iteration.
- Custom function - Enter your own plot function as a function handle. To provide more than one plot function use a cell array, for example, by typing:

$$
\text { \{@plotfcn, @plotfcn2\} }
$$

See "Plot Functions" on page 6-25.

The graphic above shows the plot functions available for the fmincon default solver.

Output function

Output function is a function or collection of functions the algorithm calls at each iteration. Through an output function you have access to optimization quantities such as function values, gradient values, and current iteration. Specify no output function, a single output function using a function handle, or multiple output functions. To provide more than one output function use a cell array of function handles in the Custom function field, for example by typing:
\{@outputfen, @outputfen2\}
For more information on writing an output function, see "Output Function" on page 6-16.

\square Output function

「 Custom function:

Display to Command Window

Select Level of display to specify the amount of information displayed when you run the algorithm. Choose from the following:

- off (default) - Display no output.
- final - Display only the reason for stopping at the end of the run.
- notify - Display output only if the function does not converge.
- iterative - Display information at each iteration of the algorithm.

Set Node interval, with the bintprog solver selected, to specify the interval of explored nodes you want to display output for. Note that integer feasible solution nodes are always shown.

Selecting Show diagnostics lists problem information and options that have changed from the defaults.

The graphic below shows the display options.

```
    \squareDisplay to command window
Level of display: off 
Node interval: c. Use default:
    Specify:
\ Show diagnostics
```


Getting Help in the Optimization Tool

Quick Reference

The Optimization Tool provides extensive context-sensitive help directly in the GUI.

For assistance with the primary tasks in the Optimization Tool window, use the Quick Reference pane. To toggle between displaying or hiding the Quick Reference pane, do either of the following:

- SelectHelp > Show Quick Reference
- Click the \gg or \ll buttons in the upper right of the GUI

To resize the Quick Reference pane, drag the vertical divider to the left or to the right.

Additional Help

In addition to the Quick Reference pane, you can access the documentation for the Optimization Tool by selecting Help > Optimization Tool Help.

Importing and Exporting Your Work

The Optimization Tool provides functionality for the following tasks in the File menu:

- "Starting a New Problem" on page 5-42
- "Exporting to the MATLAB Workspace" on page 5-43
- "Generating an M-File" on page 5-44
- "Closing the Optimization Tool" on page 5-45
- "Importing Your Work" on page 5-45

Starting a New Problem

Resetting Options and Clearing the Problem

Selecting File > Reset Optimization Tool resets the problem definition and options to the original default values. This action is equivalent to closing and restarting the optimtool.

To clear only the problem definition, select File > Clear Problem Fields. With this action, fields in the Problem Setup and Results pane are reset to the defaults, with the exception of the selected solver and algorithm choice. Any options that you have modified from the default values in the Options pane are not reset with this action.

Setting Preferences for Changing Solvers

To modify how your options are handled in the Optimization Tool when you change solvers, select File > Preferences, which opens the Preferences dialog box shown below.

The default value, Reset options to defaults, discards any options you specified previously in the optimtool. Under this choice, you can select the option Prompt before resetting options to defaults.

Alternatively, you can select Keep current options if possible to preserve the values you have modified. Changed options that are not valid with the newly selected solver are kept but not used, while active options relevant to the new solver selected are used. This choice allows you to try different solvers with your problem without losing your options.

Exporting to the MATLAB Workspace

The Export to Workspace dialog box enables you to send your problem information to the MATLAB workspace as a structure that you may then manipulate in the Command Window.

To access the Export to Workspace dialog box shown below, select File > Export to Workspace.

Г Export problem and options to a MATLAB structure named:
Export options to a MATLAB structure named:

- Export results to a MATLAB structure named:
options
pptimresults

You can specify a structure that contains

- The problem and options information
- The options information only
- The results of running your problem in optimtool

After you have exported information from the Optimization Tool to the MATLAB workspace, you can see your data in the MATLAB Workspace browser or by typing the name of the structure at the Command Window.

Generating an M-File

You may want to generate an M-file to continue with your optimization problem in the Command Window at another time. You can run the M-file without modification to recreate the results that you created with the Optimization Tool. You can also edit and modify the M-file and run it from the Command Window.

To export data from the Optimization Tool to an M-file, select File > Generate M-file.

The M-file captures the following:

- The problem definition, including the solver, information on the function to be minimized, algorithm specification, constraints, and start point
- The options (using optimset) with the currently selected option value

Running the M-file at the Command Window reproduces your problem results.

Although you cannot export your problem results to a generated M-file, you can save them in a MAT-file that you can use with your generated M-file, by exporting the results using the Export to Workspace dialog box, then saving the data to a MAT-file from the Command Window.

Closing the Optimization Tool

To close the optimtool window, select File > Close.

Importing Your Work

Whether you saved options from the Optimization Toolbox functions at the Command Window or if you exported options, or the problem and options, from the optimtool, you can resume work on your problem using the optimtool.

There are three ways to import your options, or problem and options, to optimtool.

- Call the optimtool function from the Command Window specifying your options, or problem and options, as the input, tor example,

```
optimtool(options)
```

- Select File > Import Options in the Optimization Tool.
- Select File $>$ Import Problem in the Optimization Tool.

The methods described above require that the options, or problem and options, be present in the MATLAB workspace.

For more information on the various ways to start the Optimization Tool, see the optimtool function reference.

Optimization Tool Example Using the Isqlin Solver

This section shows how to use the Optimization Tool to solve the "Optimization Example" on page 1-3.

The Problem

The problem in this example is to find the point on the plane $x_{1}+2 x_{2}+4 x_{3}=7$ that is closest to the origin. The easiest way to solve this problem is to minimize the square of the distance from a point $x=\left(x_{1}, x_{2}, x_{3}\right)$ on the plane to the origin, which returns the same optimal point as minimizing the actual distance. Since the square of the distance from an arbitrary point (x_{1}, x_{2}, x_{3}) to the origin is $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, you can describe the problem as follows:

$$
\underset{x}{\operatorname{minimize}} f(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
$$

subject to the constraint

$$
x_{1}+2 x_{2}+4 x_{3}=7
$$

The function $f(x)$ is called the objective function and $x_{1}+2 x_{2}+4 x_{3}=7$ is an equality constraint. More complicated problems might contain other equality constraints, inequality constraints, and upper or lower bound constraints.

Setting Up the Problem

This section shows how to set up the problem with the lsqlin solver in the Optimization Tool.

1 Enter optimtool in the Command Window to open the Optimization Tool.
2 Select lsqlin from the selection of solvers. Use the default large-scale algorithm.

| Solver: | Isqlin - Constrained linear least squares |
| :--- | :--- | :--- |
| Algorithm: | Large scale |

3 Enter the following to create variables for the objective function:

- In the \mathbf{C} field, enter eye(3).
- In the d field, enter zeros $(3,1)$.

The \mathbf{C} and \mathbf{d} fields should appear as shown in the following figure.
Problem
C: eye(3)
d: zeros(3,1)

4 Enter the following to create variables for the inequality constraints:

- In the Aeq field, enter [lllllllll $\left.\begin{array}{ll}1 & 2\end{array}\right]$.
- In the beq field, enter 7.

The Aeq and beq fields should appear as shown in the following figure.

5 Click the Start button as shown in the following figure.

6 When the algorithm terminates, the Run solver and view results the following information is displayed:

- The Current iteration value when the algorithm terminated, which for this example is 1 .
- The final value of the objective function when the algorithm terminated:

Objective function value: 2.333333333333333

- The algorithm termination message:

Optimization terminated.

- The final point, which for this example is
0.3333
0.6667
1.3333

Argument and Options Reference

\author{

This chapter provides detailed descriptions of the Optimization Toolbox arguments and options. It contains:
 \begin{tabular}{ll}

Function Arguments (p. 6-2) \& | Describes the input and output |
| :--- |
| arguments of the toolbox functions. |

Optimization Options (p. 6-8) \& Describes optimization options.
\end{tabular}

}

Function Arguments

The Optimization Toolbox functions use these arguments.
Input Arguments on General descriptions of input arguments used by page 6-2

Output Arguments on page 6-5 toolbox functions

General descriptions of output arguments used by toolbox functions

Individual function reference pages provide function-specific information, as necessary.

Input Arguments

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| A, b | The matrix A and vector b are,
 respectively, the coefficients of the
 linear inequality constraints and
 the corresponding right-side vector:
 $A^{*} x$ <= b. | fgoalattain, fmincon, fminimax,
 fseminf, linprog, lsqlin,
 quadprog |
| Aeq, beq | The matrix Aeq and vector beq are,
 respectively, the coefficients of the
 linear equality constraints and the
 corresponding right-side vector:
 Aeq*x = beq. | fgoalattain, fmincon, fminimax,
 fseminf, linprog, lsqlin,
 quadprog |
| C, d | The matrix C and vector d are,
 respectively, the coefficients of the
 over or underdetermined linear
 system and the right-side vector to
 be solved. | lsqlin, lsqnonneg |
| f | The vector of coefficients for the
 linear term in the linear equation
 $f^{\prime *} x$ or the quadratic equation
 $x^{\prime *} H^{*} x+f$ '*x. | linprog, quadprog |

Input Arguments (Continued)

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| fun | The function to be optimized. fun
 is a function handle for an M-file
 function or a function handle for
 an anonymous function. See the
 individual function reference pages
 for more information on fun. | fgoalattain, fminbnd, fmincon,
 fminimax, fminsearch, fminunc,
 fseminf, fsolve, fzero,
 lsqcurvefit, lsqnonlin |
| goal | Vector of values that the objectives
 attempt to attain. The vector is
 the same length as the number of
 objectives. | fgoalattain |
| H | The matrix of coefficients for the
 quadratic terms in the quadratic
 equation $x^{\prime *} H^{*} x+f$ ' *x. H must be
 symmetric. | quadprog |
| lb, ub | Lower and upper bound vectors
 (or matrices). The arguments
 are normally the same size as x.
 However, if lb has fewer elements
 than x, say only m, then only the
 first m elements in x are bounded
 below; upper bounds in ub can
 be defined in the same manner.
 You can also specify unbounded
 variables using - Inf (for lower
 bounds) or Inf (for upper bounds).
 For example, if lb(i) = - Inf, the
 variable x(i) is unbounded below. | fgoalattain, fmincon, fminimax,
 fseminf, linprog, lsqcurvefit,
 lsqlin, lsqnonlin, quadprog |

Input Arguments (Continued)

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| nonlcon | The function that computes the
 nonlinear inequality and equality
 constraints. "Avoiding Global
 Variables via Anonymous and
 Nested Functions" on page 2-20
 explains how to parameterize the
 function nonlcon, if necessary.
 See the individual reference pages
 for more information on nonlcon. | fgoalattain, fmincon, fminimax |
| ntheta | The number of semi-infinite
 constraints. | fseminf |
| options | An structure that defines options
 used by the optimization functions.
 For information about the options,
 see "Optimization Options" on
 page 6-8 or the individual function
 reference pages. | All functions |
| seminfcon | The function that computes the
 nonlinear inequality and equality
 constraints and the semi-infinite
 constraints. seminfcon is the name
 of an M-file or MEX-file. "Avoiding
 Global Variables via Anonymous
 and Nested Functions" on page
 2-20 explains how to parameterize
 seminfcon, if necessary.
 See the function reference pages
 for fseminf for more information
 on seminfcon. | fseminf |
| weight | A weighting vector to control
 the relative underattainment or
 overattainment of the objectives. | fgoalattain |
| | | |

Input Arguments (Continued)

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| xdata, ydata | The input data xdata and the
 observed output data ydata that
 are to be fitted to an equation. | lsqcurvefit |
| $x 0$ | Starting point (a scalar, vector or
 matrix).
 (For fzero, x0 can also be a
 two-element vector representing an
 interval that is known to contain
 a zero.) | All functions except fminbnd |
| $x 1, x 2$ | The interval over which the
 function is minimized. | fminbnd |

Output Arguments

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| attainfactor | The attainment factor at the
 solution x. | fgoalattain |
| exitflag | An integer identifying the reason
 the optimization algorithm
 terminated. You can use exitflag
 as a programming tool when
 writing M-files that perform
 optimizations. See the reference
 pages for the optimization functions
 for descriptions of exitflag specific
 to each function.
 You can also return a message
 stating why an optimization
 terminated by calling the
 optimization function with
 the output argument output and
 then displaying output.message. | All functions |

Output Arguments (Continued)

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| fval | The value of the objective function
 fun at the solution x. | fgoalattain, fminbnd, fmincon,
 fminimax, fminsearch, fminunc,
 fseminf, fsolve, fzero, linprog,
 quadprog |
| grad | The value of the gradient of fun
 at the solution x. If fun does not
 compute the gradient, grad is a
 finite-differencing approximation
 of the gradient. | fmincon, fminunc |
| hessian | The value of the Hessian of fun
 at the solution x. For large-scale
 methods, if fun does not compute
 the Hessian, hessian is a
 finite-differencing approximation
 of the Hessian. For medium-scale
 methods, hessian is the value of
 the Quasi-Newton approximation
 to the Hessian at the solution x. | fmincon, fminunc |
| jacobian | The value of the Jacobian of fun
 at the solution x. If fun does not
 compute the Jacobian, jacobian is
 a finite-differencing approximation
 of the Jacobian. | lsqcurvefit, lsqnonlin, fsolve |
| lambda | The Lagrange multipliers at the
 solution x. lambda is a structure
 where each field is for a different
 constraint type. For structure field
 names, see individual function
 descriptions. (For lsqnonneg,
 lambda is simply a vector, as
 lsqnonneg only handles one kind
 of constraint.) | fgoalattain, fmincon, fminimax,
 fseminf, linprog, lsqcurvefit,
 lsqlin, lsqnonlin, lsqnonneg,
 quadprog |
| maxfval | max\{fun(x)\} at the solution xfr. | fminimax |

Output Arguments (Continued)

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| output | An output structure that contains
 information about the results of
 the optimization. For structure
 field names, see individual function
 descriptions. | All functions |
| residual | The value of the residual at the
 solution x. | lsqcurvefit, lsqlin, lsqnonlin,
 lsqnonneg |
| resnorm | The value of the squared 2-norm of
 the residual at the solution x. | lsqcurvefit, lsqlin, lsqnonlin,
 lsqnonneg |
| x | The solution found by the
 optimization function. If exitflag
 $>$ 0, then x is a solution; otherwise,
 x is the value of the optimization
 routine when it terminated
 prematurely. | All functions |

Optimization Options

The following table describes fields in the optimization options structure options. You can set values of these fields using the function optimset. The column labeled L, M, B indicates whether the option applies to large-scale methods, medium scale methods, or both:

- L - Large-scale methods only
- M - Medium-scale methods only
- B - Both large- and medium-scale methods

See the optimset reference page and the individual function reference pages for information about option values and defaults.

The default values for the options vary depending on which optimization function you call with options as an input argument. You can determine the default option values for any of the optimization functions by entering optimset followed by the name of the function. For example,

```
optimset fmincon
```

returns a list of the options and the default values for fmincon. Options whose default values listed as [] are not used by the function.

Optimization Options

| Option Name | Description | L, M, B | Used by Functions |
| :--- | :--- | :--- | :--- |
| BranchStrategy | Strategy bintprog uses to select
 branch variable. | M | bintprog |
| DerivativeCheck | Compare user-supplied analytic
 derivatives (gradients or Jacobian)
 to finite differencing derivatives. | B | fgoalattain,
 fmincon,
 fminimax, fminunc,
 fseminf, fsolve,
 lsqcurvefit,
 lsqnonlin |

Optimization Options (Continued)

| Option Name | Description | L, M, B | Used by Functions |
| :--- | :--- | :--- | :--- |
| Diagnostics | Display diagnostic information
 about the function to be minimized
 or solved. | B | All but fminbnd,
 fminsearch, fzero,
 and lsqnonneg |
| DiffMaxChange | Maximum change in variables for
 finite differencing. | M | fgoalattain,
 fmincon,
 fminimax, fminunc,
 fseminf, fsolve,
 lsqcurvefit,
 lsqnonlin |
| DiffMinChange | Minimum change in variables for
 finite differencing. | M | fgoalattain,
 fmincon,
 fminimax, fminunc,
 fseminf, fsolve, |
| | lsqcurvefit,
 lsqnonlin | | |
| Display | Level of display. 'off' displays no
 output; 'iter' displays output at
 each iteration; 'final' displays
 just the final output; 'notify'
 displays output only if function
 does not converge. | B | All. See the
 individual function
 reference pages
 for the values that
 apply. |

Optimization Options (Continued)

| Option Name | Description | L, M, B | Used by Functions |
| :---: | :---: | :---: | :---: |
| FunValCheck | Check whether objective function and constraints values are valid. ' on ' displays an error when the objective function or constraints return a value that is complex, NaN , or Inf.
 Note FunValCheck does not return an error for Inf when used with fminbnd, fminsearch, or fzero, which handle Inf appropriately.
 'off' displays no error. | B | ```fgoalattain, fminbnd, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, fzero, lsqcurvefit, lsqnonlin``` |
| GoalsExactAchieve | Specify the number of objectives required for the objective fun to equal the goal goal. Objectives should be partitioned into the first few elements of F. | M | fgoalattain |
| GradConstr | User-defined gradients for the nonlinear constraints. | M | fgoalattain, fmincon, fminimax |
| GradObj | User-defined gradients for the objective functions. | B | fgoalattain, fmincon, fminimax, fminunc, fseminf |
| Hessian | If ' on ', function uses user-defined Hessian or Hessian information (when using HessMult), for the objective function. If 'off', function approximates the Hessian using finite differences. | L | fmincon, fminunc |

Optimization Options (Continued)

| Option Name | Description | L, M, B | Used by Functions |
| :--- | :--- | :--- | :--- |
| HessMult | User-defined Hessian multiply
 function. "Avoiding Global
 Variables via Anonymous and
 Nested Functions" on page 2-20
 explains how to parameterize
 the Hessian multiply function, if
 necessary. | L | fmincon, fminunc,
 quadprog |
| HessPattern | Sparsity pattern of the Hessian
 for finite differencing. The size of
 the matrix is n-by-n, where n is
 the number of elements in x0, the
 starting point. | L | fmincon, fminunc |
| | Quasi-Newton updating scheme. | M | fminunc |
| HessUpdate | Initial quasi-Newton matrix. | M | fminunc |
| InitialHessMatrix | Initial quasi-Newton matrix type. | M | fminunc |
| InitialHessType | If 'on', function uses user-defined
 Jacobian or Jacobian information
 (when using JacobMult), for
 the objective function. If 'off ',
 function approximates the
 Jacobian using finite differences. | B | fsolve,
 lsqcurvefit, |
| Jacobian | User-defined Jacobian multiply
 function. "Avoiding Global
 Variables via Anonymous and
 Nested Functions" on page 2-20
 explains how to parameterize the
 Jacobian multiply function, if
 necessary. | L | fsolven
 lsqcurvefit,
 lsqlin, lsqnonlin |
| JacobMult | | | |

Optimization Options (Continued)

| Option Name | Description | L, M, B | Used by Functions |
| :---: | :---: | :---: | :---: |
| JacobPattern | Sparsity pattern of the Jacobian for finite differencing. The size of the matrix is m-by-n, where m is the number of values in the first argument returned by the user-specified function fun, and n is the number of elements in $\times 0$, the starting point. | L | fsolve, lsqcurvefit, lsqnonlin |
| LargeScale | Use large-scale algorithm if possible. | B | fmincon, fminunc, fsolve, linprog, lsqcurvefit, lsqlin, lsqnonlin, quadprog |
| LevenbergMarquardt | Choose Levenberg-Marquardt over Gauss-Newton algorithm. ' on' specifies the Levenberg-Marquardt algorithm. 'off' specifies the Gauss-Newton algorithm. | M | lsqcurvefit, lsqnonlin |
| LineSearchType | Line search algorithm choice. | M | fsolve, lsqcurvefit, lsqnonlin |
| MaxFunEvals | Maximum number of function evaluations allowed. | B | ```fgoalattain, fminbnd, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, lsqcurvefit, lsqnonlin``` |
| MaxIter | Maximum number of iterations allowed. | B | All but fzero and lsqnonneg |

Optimization Options (Continued)

| Option Name | Description | L, M, B | Used by Functions |
| :--- | :--- | :--- | :--- |
| MaxNodes | Maximum number of possible
 solutions, or nodes, the binary
 integer programming function
 bintprog searches. | M | bintprog |
| MaxPCGIter | Maximum number of iterations of
 preconditioned conjugate gradients
 method allowed. | L | fmincon,
 fminunc, fsolve,
 lsqcurvefit,
 lsqlin, lsqnonlin,
 quadprog |
| MaxRLPIter | Maximum number of iterations
 of linear programming relaxation
 method allowed. | M | bintprog |
| MaxSQPIter | Maximum number of iterations of
 sequential quadratic programming
 method allowed. | M | fmincon |
| MaxTime | Maximum amount of time in
 seconds allowed for the algorithm. | M | bintprog |
| MeritFunction | Use goal attainment/minimax
 merit function (multiobjective) vs.
 fmincon (single objective). | M | fgoalattain,
 fminimax |
| MinAbsMax | Number of $F(x)$ to minimize the
 worst case absolute values. | M | fminimax |
| NodeDisplayInterval | Node display interval for bintprog. | M | bintprog |
| NodeSearchStrategy | Search strategy that bintprog
 uses. | M | bintprog |

Optimization Options (Continued)

| Option Name | Description | L, M, B | Used by Functions |
| :---: | :---: | :---: | :---: |
| NonlEqnAlgorithm | Specify one of the following algorithms for solving nonlinear equations:
 - 'dogleg' - Trust-region dogleg algorithm (default)
 - 'lm' - Levenberg-Marquardt
 - 'gn' - Gauss-Newton | M | fsolve |
| OutputFen | Specify one or more user-defined functions that the optimization function calls at each iteration. See "Output Function" on page 6-16. | B | fgoalattain, fminbnd, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, fzero, lsqcurvefit, lsqnonlin |
| PlotFens | Plots various measures of progress while the algorithm executes, select from predefined plots or write your own. Specifying @optimplotx plots the current point; @optimplotfunccount plots the function count; @optimplotfval plots the function value; @optimplotconstrviolation plots the maximum constraint violation; @optimplotresnorm plots the norm of the residuals; @optimplotstepsize plots the step size; @optimplotfirstorderopt plots the first-order of optimality. See "Plot Functions" on page 6-25. | B | fgoalattain, fminbnd, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, fzero, lsqcurvefit, and lsqnonlin. See the individual function reference pages for the values that apply. |

Optimization Options (Continued)

| Option Name | Description | L, M, B | Used by Functions |
| :---: | :---: | :---: | :---: |
| PrecondBandWidth | Upper bandwidth of preconditioner for PCG. Setting to 'Inf' uses a direct factorization instead of CG. | L | fmincon, fminunc, fsolve, lsqcurvefit, lsqlin, lsqnonlin, quadprog |
| RelLineSrchBnd | Relative bound online search step length. | M | fgoalattain, fmincon, fminimax, fseminf |
| RelLineSrchBndDuration | Number of iterations for which the bound specified in RelLineSrchBnd should be active. | M | fgoalattain, fmincon, fminimax, fseminf |
| Simplex | If ' on ', function uses the simplex algorithm. | M | linprog |
| TolCon | Termination tolerance on the constraint violation. | B | ```bintprog, fgoalattain, fmincon, fminimax, fseminf``` |
| TolFun | Termination tolerance on the function value. | B | bintprog,
 fgoalattain,
 fmincon, fminimax,
 fminsearch,
 fminunc,
 fseminf, fsolve,
 linprog (L only),
 lsqcurvefit,
 lsqlin (L only),
 lsqnonlin,
 quadprog (L only) |
| TolPCG | Termination tolerance on the PCG iteration. | L | fmincon, fminunc, fsolve, lsqcurvefit, lsqlin, lsqnonlin, quadprog |

Optimization Options (Continued)

| Option Name | Description | L, M, B | Used by Functions | | |
|---|---|---|---|---|---|
| TolRLPFun | Termination tolerance on the
 function value of a linear
 programming relaxation problem. | M | bintprog |
| TolX | Termination tolerance on x. | B | All functions except
 the medium-scale
 algorithms for |
| linprog, lsqlin, | | | |
| and quadprog | | | |, | TolXInteger |
| :--- |
| |
| TypicalX |
| Tolerance within which bintprog
 considers the value of a variable to
 be an integer. |
| Typical x values. The length of the
 vector is equal to the number of
 elements in x0, the starting point. |
| B |

Output Function

The Outputfon field of the options structure specifies one or more functions that an optimization function calls at each iteration. Typically, you might use an output function to plot points at each iteration or to display optimization quantities from the algorithm. To set up an output function, do the following:

1 Write the output function as an M-file function or subfunction.
2 Use optimset to set the value of Outputfon to be a function handle, that is, the name of the function preceded by the @ sign. For example, if the output function is outfun.m, the command

```
options = optimset('OutputFcn', @outfun);
```

specifies OutputFen to be the handle to outfun. To specify more than one output function, use the syntax

```
options = optimset('OutputFcn', @outfun, @outfun2);
```

3 Call the optimization function with options as an input argument.
See "Calling an Output Function Iteratively" on page 2-88 for an example of an output function.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the output function OutputFen, if necessary.

Structure of the Output Function

The function definition line of the output function has the following form:

```
stop = outfun(x, optimValues, state)
```

where

- x is the point computed by the algorithm at the current iteration.
- optimValues is a structure containing data from the current iteration. "Fields in optimValues" on page 6-17 describes the structure in detail.
- state is the current state of the algorithm. "States of the Algorithm" on page 6-24 lists the possible values.
- stop is a flag that is true or false depending on whether the optimization routine should quit or continue. See "Stop Flag" on page 6-24 for more information.

The optimization function passes the values of the input arguments to outfun at each iteration.

Fields in optimValues

The following table lists the fields of the optimValues structure. A particular optimization function returns values for only some of these fields. For each field, the Returned by Functions column of the table lists the functions that return the field.

Corresponding Output Arguments. Some of the fields of optimValues correspond to output arguments of the optimization function. After the final iteration of the optimization algorithm, the value of such a field equals the corresponding output argument. For example, optimValues.fval corresponds to the output argument fval. So, if you call fmincon with an output function and return fval, the final value of optimValues.fval equals fval. The Description column of the following table indicates the fields that have a corresponding output argument.

Command-Line Display. The values of some fields of optimValues are displayed at the command line when you call the optimization function with the Display field of options set to 'iter', as described in "Displaying Iterative Output" on page 2-81. For example, optimValues.fval is displayed in the $f(x)$ column. The Command-Line Display column of the following table indicates the fields that you can display at the command line.

In the following table, L, M, and B indicate:

- L - Function returns a value to the field when using a large-scale algorithm.
- M - Function returns a value to the field when using a medium-scale algorithm.
- B - Function returns a value to the field when using both large- and medium-scale algorithms.

optimValues Fields

| OptimValues Field
 (optimValues.field) | Description | Returned by
 Functions | Command-Line
 Display |
| :--- | :--- | :--- | :--- |
| cgiterations | Number of conjugate
 gradient iterations at
 current optimization
 iteration. | fmincon (L), fsolve
 (L), lsqcurvefit (L),
 lsqnonlin (L) | CG-iterations
 See "Displaying
 Iterative Output"
 on page 2-81. |

optimValues Fields (Continued)

| OptimValues Field (optimValues.field) | Description | Returned by Functions | Command-Line Display |
| :---: | :---: | :---: | :---: |
| constrviolation | Maximum constraint violation. | fgoalattain (M), fmincon (M), fminimax (M), fseminf (M) | max constraint
 See "Displaying Iterative Output" on page 2-81. |
| degenerate | Measure of degeneracy. A point is degenerate if
 The partial derivative with respect to one of the variables is 0 at the point.
 A bound constraint is active for that variable at the point.
 See "Degeneracy" on page 6-23. | fmincon (L), fsolve (L), lsqcurvefit (L), lsqnonlin (L) | None |
| directionalderivative | Directional derivative in the search direction. | fgoalattain (M), fmincon (M), fminimax (M), fminunc (M), fseminf (M), fsolve (M, NonlEqn-
 Algorithm='lm', 'gn'), lsqcurvefit (M), lsqnonlin (M) | Directional derivative
 See "Displaying Iterative Output" on page 2-81. |
| firstorderopt | First-order optimality (depends on algorithm). Final value equals optimization function output output.firstorderopt. | fgoalattain (M), fmincon (B), fminimax (M), fminunc (M), fseminf (M), fsolve (B), lsqcurvefit (B), lsqnonlin (B) | First-order optimality
 See "Displaying Iterative Output" on page 2-81. |

optimValues Fields (Continued)

$\left.\begin{array}{l|l|l|l}\hline \begin{array}{l}\text { OptimValues Field } \\ \text { (optimValues.field) }\end{array} & \text { Description } & \begin{array}{l}\text { Returned by } \\ \text { Functions }\end{array} & \begin{array}{l}\text { Command-Line } \\ \text { Display }\end{array} \\ \hline \text { funccount } & \begin{array}{l}\text { Cumulative number of } \\ \text { function evaluations. } \\ \text { Final value equals } \\ \text { optimization } \\ \text { function output } \\ \text { output.funcCount. }\end{array} & \begin{array}{l}\text { fgoalattain (M), } \\ \text { fminbnd (B), fmincon } \\ \text { (B), fminimax } \\ \text { (M), fminsearch } \\ \text { (B), fminunc (B), } \\ \text { fsolve (B), fzero (B), } \\ \text { fseminf (M), } \\ \text { lsqcurvefit (B), } \\ \text { lsqnonlin (B) }\end{array} & \begin{array}{l}\text { F-count } \\ \text { See "Displaying } \\ \text { Iterative Output" } \\ \text { on page 2-81. }\end{array} \\ \hline \text { fval } & \begin{array}{l}\text { Function value } \\ \text { at current point. } \\ \text { Final value equals } \\ \text { optimization function } \\ \text { output fval. }\end{array} & \begin{array}{l}\text { fgoalattain (M), } \\ \text { fminbnd (B), fmincon } \\ \text { (B), fminimax (M), } \\ \text { fminsearch (B), } \\ \text { fminunc (B), fseminf } \\ \text { (M), fsolve (B), }\end{array} & \begin{array}{l}\text { See "Displaying } \\ \text { fzero (B) }\end{array} \\ \hline \text { on page 2-81. }\end{array}\right]$

optimValues Fields (Continued)

| OptimValues Field (optimValues.field) | Description | Returned by Functions | Command-Line Display |
| :---: | :---: | :---: | :---: |
| iteration | Iteration number starts at 0 . Final value equals optimization function output output.iterations. | fgoalattain (M), fminbnd (B),fmincon (B), fminimax
 (M), fsolve (B), fminsearch (B), fminunc (B), fseminf (M), fsolve (M), fzero (B), lsqcurvefit (B), lsqnonlin (B) | Iteration
 See "Displaying Iterative Output" on page 2-81. |
| lambda | The
 Levenberg-Marquardt parameter, lambda, at the current iteration. See "Levenberg-Marquardt Method" on page 3-21. | fgoalattain (M), fmincon (M), fminimax (M), fseminf (M), fsolve (M, NonlEqnAlgorithm='lm', 'gn'), lsqcurvefit (M), lsqnonlin (M) | Lambda |
| positivedefinite | 0 if algorithm detects negative curvature while computing Newton step.
 1 otherwise. | fmincon (L), fsolve (L), lsqcurvefit (L), lsqnonlin (L) | None |
| procedure | Procedure messages. | fgoalattain (M), fminbnd (B), fmincon (M), fminimax (M), fminsearch (B), fseminf (M), fzero (B) | Procedure
 See "Displaying Iterative Output" on page 2-81. |
| ratio | Ratio of change in the objective function to change in the quadratic approximation. | fmincon (L), fsolve (L), lsqcurvefit (L), lsqnonlin (L) | None |

optimValues Fields (Continued)

| OptimValues Field
 (OptimValues.field) | Description | Returned by
 Functions | Command-Line
 Display |
| :--- | :--- | :--- | :--- |
| residual | The residual vector.
 For fsolve, residual
 means the 2-norm of
 the residual squared. | lsqcurvefit (B),
 lsqnonlin (B), fsolve
 (B) | Residual
 See "Displaying
 Iterative Output"
 on page 2-81. |
| resnorm | 2-norm of the residual
 squared. | lsqcurvefit (B),
 lsqnonlin (B) | Resnorm
 See "Displaying
 Iterative Output"
 on page 2-81. |
| searchdirection | Search direction. | fgoalattain (M),
 fmincon (M), fminimax
 (M), fminunc (M),
 fseminf (M), fsolve
 (M, NonlEqn-
 Algorithm= 'lm ', 'gn '),
 lsqcurvefit (M),
 lsqnonlin (M) | None |
| stepaccept | Status of the current
 trust region step.
 Returns true if the
 current trust region
 step was successful,
 and false if the
 trust region step was
 unsuccessful. | fsolve (M, NonlEqn-
 Algorithm= ' dogleg') | None |

optimValues Fields (Continued)

| OptimValues Field (optimValues.field) | Description | Returned by Functions | Command-Line Display |
| :---: | :---: | :---: | :---: |
| stepsize | Current step size (displacement in x). Final value equals optimization function output output.stepsize. | fgoalattain (M), fmincon (B), fminimax (M), fminunc (B), fseminf (M), fsolve (B), lsqcurvefit (B), lsqnonlin (B) | Step-size or Norm of Step
 See "Displaying Iterative Output" on page 2-81. |
| trustregionradius | Radius of trust region. | fmincon (L), fsolve (L, M, NonlEqnAlgorithm='lm', 'gn'), lsqcurvefit, fsolve (L), lsqnonlin (L) | Trust-region radius
 See "Displaying Iterative Output" on page 2-81. |

Degeneracy. The value of the field degenerate, which measures the degeneracy of the current optimization point x, is defined as follows. First, define a vector r, of the same size as x, for which $r(i)$ is the minimum distance from $\times(i)$ to the i th entries of the lower and upper bounds, $l b$ and $u b$. That is,

$$
r=\min (a b s(u b-x, x-l b))
$$

Then the value of degenerate is the minimum entry of the vector $r+\operatorname{abs}(\mathrm{grad})$, where grad is the gradient of the objective function. The value of degenerate is 0 if there is an index i for which both of the following are true:

- $\operatorname{grad}(i)=0$
- $x(i)$ equals the i th entry of either the lower or upper bound.

States of the Algorithm

The following table lists the possible values for state:

| State | Description |
| :--- | :--- |
| 'init' | The algorithm is in the initial state before the first
 iteration. |
| 'interrupt' | The algorithm is in some computationally expensive
 part of the iteration. In this state, the output function
 can interrupt the current iteration of the optimization.
 At this time, the values of x and optimValues are the
 same as at the last call to the output function in which
 state== 'iter'. |
| 'iter' | The algorithm is at the end of an iteration. |
| 'done' | The algorithm is in the final state after the last iteration. |

The following code illustrates how the output function might use the value of state to decide which tasks to perform at the current iteration:

```
switch state
    case 'iter'
        % Make updates to plot or guis as needed
    case 'interrupt'
        % Probably no action here. Check conditions to see
        % whether optimization should quit.
    case 'init'
        % Setup for plots or guis
    case 'done'
        % Cleanup of plots, guis, or final plot
otherwise
end
```


Stop Flag

The output argument stop is a flag that is true or false. The flag tells the optimization function whether the optimization should quit or continue. The following examples show typical ways to use the stop flag.

Stopping an Optimization Based on Data in optimValues. The output function can stop an optimization at any iteration based on the current data in optimValues. For example, the following code sets stop to true if the directional derivative is less than .01:

```
function stop = outfun(x, optimValues)
stop = false;
% Check if directional derivative is less than .01.
if optimValues.directionalderivative < .01
    stop = true;
end
```

Stopping an Optimization Based on GUI Input. If you design a GUI to perform optimizations, you can make the output function stop an optimization when a user clicks a Stop button on the GUI. The following code shows how to do this, assuming that the Stop button callback stores the value true in the optimstop field of a handles structure called hObject:

```
function stop = outfun(x)
stop = false;
% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');
```


Plot Functions

The PlotFcns field of the options structure specifies one or more functions that an optimization function calls at each iteration to plot various measures of progress while the algorithm executes. The structure of a plot function is the same as that for an output function. For more information on writing and calling a plot function, see "Output Function" on page 6-16.

To view and modify a predefined plot function listed for PlotFens in the previous table, you can open it in the MATLAB editor. For example, to view the M-file corresponding to the norm of residuals, type:
edit optimplotresnorm.m

Functions - By Category

Minimization (p. 7-2)
Equation Solving (p. 7-2)
Least Squares (Curve Fitting)
(p. 7-3)

Graphical User Interface (p. 7-3)

Utility (p. 7-3)

Solve minimization problems
Equation solving
Solve least squares problems

Open Optimization Tool to select solver, optimization options, and run problems
Get and set optimization options

Minimization

| bintprog | Solve binary integer programming
 problems |
| :--- | :--- |
| fgoalattain | Solve multiobjective goal attainment
 problems |
| fminbnd | Find minimum of single-variable
 function on fixed interval |
| fmincon | Find minimum of constrained
 nonlinear multivariable function |
| fminimax | Solve minimax constraint problem |
| fminsearch | Find minimum of unconstrained
 multivariable function using
 derivative-free method |
| fminunc | Find minimum of unconstrained
 multivariable function |
| fseminf | Find minimum of semi-infinitely
 constrained multivariable nonlinear
 function |
| linprog | Solve linear programming problems
 Solve quadratic programming |
| quadprog | problems |

Equation Solving

See \backslash for solving linear equations of the form $A x=b$.

| fsolve | Solve system of nonlinear equations |
| :--- | :--- |
| fzero | Find root of continuous function of
 one variable |

Least Squares (Curve Fitting)

See \backslash for solving linear equations of the form $A x=b$.

| lsqcurvefit | Solve nonlinear curve-fitting
 (data-fitting) problems in
 least-squares sense |
| :--- | :--- |
| lsqlin | Solve constrained linear
 least-squares problems |
| lsqnonlin | Solve nonlinear least-squares
 (nonlinear data-fitting) problems |
| lsqnonneg | Solve nonnegative least-squares
 constraint problem |

Graphical User Interface

optimtool

Tool to select solver, optimization options, and run problems

Utility

fzmult
gangstr
optimget
optimset

Multiplication with fundamental nullspace basis

Zero out "small" entries subject to structural rank

Optimization options values
Create or edit optimization options structure

7 Functions - By Category

8

Functions - Alphabetical List

bintprog

Purpose
Equation

Syntax

```
x = bintprog(f)
x = bintprog(f,A,b)
x = bintprog(f,A,b,Aeq,beq)
x = bintprog(f,A,b,Aeq,beq,x0)
x = bintprog(f,A,b,Aeq,Beq,x0,options)
[x, fval] = bintprog(...)
[x,fval,exitflag] = bintprog(...)
[x,fval,exitflag,output] = bintprog(...)
```

Description $\quad x=$ bintprog (f) solves the binary integer programming problem
$\underset{x}{\operatorname{minimize}} f^{\prime} \cdot x$
$\mathrm{x}=$ bintprog $(\mathrm{f}, \mathrm{A}, \mathrm{b})$ solves the binary integer programming problem
$\underset{x}{\operatorname{minimize}} f^{\prime} \cdot x \quad$ such that $\quad A \cdot x \leq b$
$\mathrm{x}=\operatorname{bintprog}(\mathrm{f}, \mathrm{A}, \mathrm{b}, \mathrm{Aeq}, \mathrm{beq})$ solves the preceding problem with the additional equality constraint.

Aeq $\cdot x=$ beq
$x=$ bintprog ($f, A, b, A e q, b e q, x 0)$ sets the starting point for the algorithm to $\times 0$. If $\times 0$ is not in the feasible region, bintprog uses the default initial point.

bintprog

$x=$ bintprog(f, $A, b, A e q, B e q, x 0$, options) minimizes with the default optimization options replaced by values in the structure options, which you can create using the function optimset.
[x, fval] = bintprog(...) returns fval, the value of the objective function at x.
[x,fval,exitflag] = bintprog(...) returns exitflag that describes the exit condition of bintprog. See "Output Arguments" on page 8-3.
[x,fval,exitflag,output] = bintprog(...) returns a structure output that contains information about the optimization. See "Output Arguments" on page 8-3.

Input Arguments

The following table lists the input arguments for bintprog. "Function Arguments" on page 6-2 contains general descriptions of input arguments for optimization functions.

| f | Vector containing the coefficients of the linear objective
 function. |
| :--- | :--- |
| A | Matrix containing the coefficients of the linear inequality
 constraints $A \cdot x \leq b$. |
| b | Vector corresponding to the right-hand side of the linear
 inequality constraints. |
| Aeq | Matrix containing the coefficients of the linear equality
 constraints Aeq $\cdot x=b e q$. |
| beq | Vector containing the constants of the linear equality
 constraints. |
| x0 | Initial point for the algorithm. |
| options \quad Options structure containing options for the algorithm. | |

Output
 Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments returned by bintprog. This section provides specific details for the arguments exitflag and output:

bintprog

| exitflag | Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated. | |
| :---: | :---: | :---: |
| | 1 | Function converged to a solution x . |
| | 0 | Number of iterations exceeded options.MaxIter. |
| | -2 | The problem is infeasible. |
| | -4 | Number of searched nodes exceeded options.MaxNodes. |
| | -5 | Search time exceeded options.MaxTime. |
| | -6 | Number of iterations the LP-solver performed at a node to solve the LP-relaxation problem exceeded options.MaxRLP. |
| output | Structure containing information about the optimization. The fields of the structure are | |
| | iterations | Number of iterations taken |
| | nodes | Number of nodes searched |
| | time | Execution time of the algorithm |
| | algorithm | Algorithm used |
| | message | Reason the algorithm terminated |

Options

Optimization options used by bintprog. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 6-8 for detailed information.

bintprog

$\left.\begin{array}{ll}\text { BranchStrategy } & \begin{array}{l}\text { Strategy the algorithm uses to select the } \\ \text { branch variable in the search tree - see } \\ \text { "Branching" on page 8-7. The choices are }\end{array} \\ \text { - 'mininfeas ' - Choose the variable with } \\ \text { the minimum integer infeasibility, that } \\ \text { is, the variable whose value is closest to } \\ 0 \text { or 1 but not equal to } 0 \text { or 1. }\end{array}\right\}$

bintprog

NodeSearchStrategy

TolFun

TolXInteger

TolRLPFun

Strategy the algorithm uses to select the next node to search in the search tree - see "Branching" on page 8-7. The choices are

- 'df' - Depth first search strategy. At each node in the search tree, if there is child node one level down in the tree that has not already been explored, the algorithm chooses one such child to search. Otherwise, the algorithm moves to the node one level up in the tree and chooses a child node one level down from that node.
- 'bn' - Best node search strategy, which chooses the node with lowest bound on the objective function.
Termination tolerance on the function value
Tolerance within which the value of a variable is considered to be integral
Termination tolerance on the function value of a linear programming relaxation problem

Algorithm | bintprog uses a linear programming (LP)-based branch-and-bound |
| :--- |
| algorithm to solve binary integer programming problems. The algorithm |
| searches for an optimal solution to the binary integer programming |
| problem by solving a series of $L P$-relaxation problems, in which the |
| binary integer requirement on the variables is replaced by the weaker |
| constraint $0 \leq x \leq 1$. The algorithm |

- Searches for a binary integer feasible solution
- Updates the best binary integer feasible point found so far as the search tree grows

bintprog

- Verifies that no better integer feasible solution is possible by solving a series of linear programming problems

The following sections describe the branch-and-bound method in greater detail.

Branching

The algorithm creates a search tree by repeatedly adding constraints to the problem, that is, "branching." At a branching step, the algorithm chooses a variable x_{j} whose current value is not an integer and adds the constraint $x_{\mathrm{j}}=0$ to form one branch and the constraint $x_{\mathrm{j}}=1$ to form the other branch. This process can be represented by a binary tree, in which the nodes represent the added constraints. The following picture illustrates a complete binary tree for a problem that has three variables, x_{1}, x_{2}, and x_{3}. Note that, in general, the order of the variables going down the levels in the tree is not the usual order of their subscripts

At each node, the algorithm solves an LP-relaxation problem using the constraints at that node and decides whether to branch or to move to another node depending on the outcome. There are three possibilities:

- If the LP-relaxation problem at the current node is infeasible or its optimal value is greater than that of the best integer point, the algorithm removes the node from the tree, after which it does not search any branches below that node. The algorithm then moves to a new node according to the method you specify in NodeSearchStrategy option.

bintprog

- If the algorithm finds a new feasible integer point with lower objective value than that of the best integer point, it updates the current best integer point and moves to the next node.
- If the LP-relaxation problem is optimal but not integer and the optimal objective value of the LP relaxation problem is less than the best integer point, the algorithm branches according to the method you specify in the BranchStrategy option.

See "Options" on page 8-4 for a description of the NodeSearchStrategy and BranchStrategy options.

Bounds

The solution to the LP-relaxation problem provides a lower bound for the binary integer programming problem. If the solution to the LP-relaxation problem is already a binary integer vector, it provides an upper bound for the binary integer programming problem.

As the search tree grows more nodes, the algorithm updates the lower and upper bounds on the objective function, using the bounds obtained in the bounding step. The bound on the objective value serves as the threshold to cut off unnecessary branches.

Limits for the Algorithm

The algorithm for bintprog could potentially search all 2^{n} binary integer vectors, where n is the number of variables. As a complete search might take a very long time, you can limit the search using the following options

- MaxNodes - Maximum number of nodes the algorithm searches
- MaxRLPIter - Maximum number of iterations the LP-solver performs at any node
- MaxTime - Maximum amount of time in seconds the algorithm runs

See "Options" on page 8-4 for more information.

Example To minimize the function

$$
f(x)=-9 x_{1}-5 x_{2}-6 x_{3}-4 x_{4}
$$

subject to the constraints

$$
\left[\begin{array}{cccc}
6 & 3 & 5 & 2 \\
0 & 0 & 1 & 1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leq\left[\begin{array}{l}
9 \\
1 \\
0 \\
0
\end{array}\right]
$$

where x_{1}, x_{2}, x_{3}, and x_{4} are binary integers, enter the following commands:

```
f = [-9; -5; -6; -4];
A = [6 3 5 2; 0 0 1 1; -1 0 1 0; 0 -1 0 1];
b = [9; 1; 0; 0];
x = bintprog(f,A,b)
Optimization terminated successfully.
x =
    1
    1
    0
    0
```


References

[1] Wolsey, Laurence A., Integer Programming, John Wiley \& Sons, 1998.
[2] Nemhauser, George L. and Laurence A. Wolsey, Integer and Combinatorial Optimization, John Wiley \& Sons, 1988.
[3] Hillier, Frederick S. and Lieberman Gerald J., Introduction to Operations Research, McGraw-Hill, 2001.

bintprog

See Also optimset

Purpose

Equation

Finds the minimum of a problem specified by $\underset{x, \gamma}{\operatorname{minimize} \gamma} \quad$ such that $\quad F(x)-$ weight $\cdot \gamma \leq$ goal x, γ

$$
c(x) \leq b
$$

$$
\operatorname{ceq}(x)=0
$$

$$
A e q \cdot x=b e q
$$

$$
l b \leq x \leq u b
$$

where x, weight, goal, $b, b e q, l b$, and $u b$ are vectors, A and Aeq are matrices, and $c(x), c e q(x)$, and $F(x)$ are functions that return vectors. $F(x), c(x)$, and $c e q(x)$ can be nonlinear functions.

Syntax

```
x = fgoalattain(fun, x0,goal,weight)
x = fgoalattain(fun, x0,goal,weight,A,b)
x = fgoalattain(fun, x0,goal,weight,A,b,Aeq, beq)
x = fgoalattain(fun, x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun, x0,goal,weight,A,b,Aeq,beq,lb,ub,
    nonlcon)
x = fgoalattain(fun, x0,goal,weight,A,b,Aeq, beq,lb,ub,nonlcon,
    ... options)
[x,fval] = fgoalattain(...)
[x,fval,attainfactor] = fgoalattain(...)
[x,fval,attainfactor,exitflag] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output,
    lambda] = fgoalattain(...)
```


Description

fgoalattain solves the goal attainment problem, which is one formulation for minimizing a multiobjective optimization problem.
$x=$ fgoalattain(fun, $x 0$, goal, weight) tries to make the objective functions supplied by fun attain the goals specified by goal by varying x, starting at $x 0$, with weight specified by weight.

fgoalattain

$x=$ fgoalattain(fun, $x 0, g o a l$, weight, $A, b)$ solves the goal attainment problem subject to the linear inequalities $A * x<=b$.
$x=$ fgoalattain(fun, $x 0$, goal, weight, $A, b, A e q, b e q)$ solves the goal attainment problem subject to the linear equalities Aeq*x $=\mathrm{beq}$ as well. Set $A=[]$ and $b=[]$ if no inequalities exist.
$x=$ fgoalattain(fun, $x 0, g o a l$, weight, $A, b, A e q, b e q, l b, u b)$
defines a set of lower and upper bounds on the design variables in x, so that the solution is always in the range $\mathrm{lb}<=\mathrm{x}<=\mathrm{ub}$.
x =
fgoalattain(fun, $x 0$, goal, weight, $A, b, A e q, b e q, l b, u b, n o n l c o n)$ subjects the goal attainment problem to the nonlinear inequalities $c(x)$ or nonlinear equality constraints ceq (x) defined in nonlcon. fgoalattain optimizes such that $c(x)<=0$ and ceq $(x)=0$. Set $l b=[]$ and/or ub=[] if no bounds exist.

X =
fgoalattain(fun, $x 0$, goal, weight, $A, b, A e q, b e q, l b, u b, n o n l c o n, .$. options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
$[x, f v a l]=$ fgoalattain(...) returns the values of the objective functions computed in fun at the solution x.
[x,fval,attainfactor] = fgoalattain(...) returns the attainment factor at the solution x.
[x,fval,attainfactor,exitflag] = fgoalattain(...) returns a value exitflag that describes the exit condition of fgoalattain.
[x,fval,attainfactor,exitflag,output] = fgoalattain(...) returns a structure output that contains information about the optimization.
[x,fval, attainfactor,exitflag,output,lambda] = fgoalattain(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the objective function fun, if necessary.

Input Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into fgoalattain. This section provides function-specific details for fun, goal, nonlcon, options, and weight:
fun The function to be minimized. fun is a function that accepts a vector x and returns a vector F, the objective functions evaluated at x. The function fun can be specified as a function handle for an M -file function
x = fgoalattain(@myfun, x0,goal,weight)
where myfun is a MATLAB function such as

```
function F = myfun(x)
F = ... % Compute function values at x.
```

fun can also be a function handle for an anonymous function.

$$
x=\text { fgoalattain(@(x)sin(x.*x),x0,goal, weight); }
$$

To make an objective function as near as possible to a goal value, (i.e., neither greater than nor less than) use optimset to set the GoalsExactAchieve option to the number of objectives required to be in the neighborhood of the goal values. Such objectives must be partitioned into the first elements of the vector F returned by fun.

If the gradient of the objective function can also be computed and the GradObj option is ' on ', as set by

```
options = optimset('GradObj','on')
```

then the function fun must return, in the second output argument, the gradient value G, a matrix, at x. Note that by checking the value of nargout the function can avoid computing G when fun is called with only one output argument (in the case where the optimization algorithm only needs the value of F but not G).

```
function \([F, G]=\operatorname{myfun}(x)\)
\(F=\ldots \quad\) \% Compute the function values at \(x\)
if nargout > 1 \% Two output arguments
    \(\mathrm{G}=\ldots \quad\) \% Gradients evaluated at x
end
```

The gradient consists of the partial derivative $d F / d x$ of each F at the point x. If F is a vector of length m and x has length n , where n is the length of xO , then the gradient G of $F(x)$ is an n-by-m matrix where $G(i, j)$ is the partial derivative of $F(j)$ with respect to $x(i)$ (i.e., the j th column of G is the gradient of the j th objective function $F(j))$.
goal Vector of values that the objectives attempt to attain. The vector is the same length as the number of objectives F returned by fun. fgoalattain attempts to minimize the values in the vector F to attain the goal values given by goal.
nonlcon The function that computes the nonlinear inequality constraints $\mathrm{C}(\mathrm{x})$ <= 0 and the nonlinear equality constraints ceq $(x)=0$. The function nonlcon accepts a vector x and returns two vectors c and ceq. The vector c contains the nonlinear inequalities evaluated at x, and ceq contains the nonlinear equalities evaluated at x. The function nonlcon can be specified as a function handle.

```
x = fgoalattain(@myfun, x0,goal,weight,A,b,Aeq,beq,...
    lb,ub, @mycon)
```

where mycon is a MATLAB function such as

```
function [c,ceq] = mycon(x)
c = ... % compute nonlinear inequalities at x.
ceq = ... % compute nonlinear equalities at x.
```

If the gradients of the constraints can also be computed and the GradConstr option is 'on', as set by

```
options = optimset('GradConstr','on')
```

then the function nonlcon must also return, in the third and fourth output arguments, GC, the gradient of $c(x)$, and GCeq, the gradient of ceq (x). Note that by checking the value of nargout the function can avoid computing GC and GCeq when nonlcon is called with only two output arguments (in the case where the optimization algorithm only needs the values of c and ceq but not GC and GCeq).

```
function [c,ceq,GC,GCeq] = mycon(x)
c = ... % Nonlinear inequalities at x
ceq = ... % Nonlinear equalities at x
if nargout > 2 % Nonlcon called with 4 outputs
    GC = ... % Gradients of the inequalities
    GCeq = ... %Gradients of the equalities
end
```

If nonlcon returns a vector c of m components and x has length n, where n is the length of $x 0$, then the gradient GC of $c(x)$ is an n-by-m matrix, where GC($i, j)$ is the partial derivative of $\mathrm{c}(\mathrm{j})$ with respect to $\mathrm{x}(\mathrm{i})$ (i.e., the j th column of GC is the gradient of the j th inequality constraint $\mathrm{c}(\mathrm{j})$). Likewise, if ceq has p components, the gradient GCeq of ceq (x) is an n-by-p matrix, where GCeq (i, j) is the partial derivative of ceq(j) with respect to $x(i)$ (i.e.,
the j th column of GCeq is the gradient of the j th equality constraint ceq(j)).

Note Because the functions in the Optimization Toolbox only accept inputs of type double, user-supplied objective and nonlinear constraint functions must return outputs of type double.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the nonlinear constraint function nonlcon, if necessary.
options "Options" on page 8-18 provides the function-specific details for the options values.
weight A weighting vector to control the relative under-attainment or overattainment of the objectives in fgoalattain. When the values of goal are all nonzero, to ensure the same percentage of under- or overattainment of the active objectives, set the weighting function to abs (goal). (The active objectives are the set of objectives that are barriers to further improvement of the goals at the solution.)

Note Setting a component of the weight vector to zero will cause the corresponding goal constraint to be treated as a hard constraint rather than as a goal constraint. An alternative method to set a hard constraint is to use the input argument nonlcon.

When the weighting function weight is positive, fgoalattain attempts to make the objectives less than the goal values. To make the objective functions greater than the goal values, set weight to be negative rather than positive. To make an objective function as near as possible
to a goal value, use the GoalsExactAchieve option and put that objective as the first element of the vector returned by fun (see the preceding description of fun and options).

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments returned by fgoalattain. This section provides function-specific details for attainfactor, exitflag, lambda, and output:

| attainfactor | The amount of over- or underachievement of the
 goals. If attainfactor is negative, the goals have
 been overachieved; if attainfactor is positive,
 the goals have been underachieved. |
| :--- | :--- |
| exitflag | Integer identifying the reason the algorithm
 terminated. The following lists the values of
 exitflag and the corresponding reasons the
 algorithm terminated. |

1 Function converged to a solutions x.

4

5

Magnitude of the search direction less than the specified tolerance and constraint violation less than options.TolCon

Magnitude of directional derivative less than the specified tolerance and constraint violation less than options.TolCon

Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals
Algorithm was terminated by the output function.

fgoalattain

| | -2 | No feasible point was found. |
| :---: | :---: | :---: |
| lambda | Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields of the structure are | |
| | lower | Lower bounds lb |
| | upper | Upper bounds ub |
| | ineqlin | Linear inequalities |
| | eqlin | Linear equalities |
| | ineqnonlin | Nonlinear inequalities |
| | eqnonlin | Nonlinear equalities |
| output | Structure containing information about the optimization. The fields of the structure are | |
| | iterations | Number of iterations taken |
| | funcCount | Number of function evaluations |
| | algorithm | Algorithm used |

Options

Optimization options used by fgoalattain. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 6-8 for detailed information.

| DerivativeCheck | Compare user-supplied derivatives
 (gradients of objective or constraints) to
 finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about
 the function to be minimized or solved. |
| DiffMaxChange | Maximum change in variables for
 finite-difference gradients. |
| DiffMinChange | Minimum change in variables for
 finite-difference gradients. |

fgoalattain

| Display | Level of display. 'off' displays no
 output; 'iter' displays output at
 each iteration; 'notify ' displays
 output only if the function does not
 converge; 'final' (default) displays
 just the final output. |
| :--- | :--- |
| FunValCheck | Check whether objective function and
 constraints values are valid. 'on'
 displays an error when the objective
 function or constraints return a value
 that is complex, Inf, or NaN. 'off'
 displays no error. |
| GoalsExactAchieve | Specifies the number of objectives for
 which it is required for the objective fun
 to equal the goal goal. Such objectives
 should be partitioned into the first few
 elements of F. |
| GradConstr | Gradient for the constraints defined by
 the user. See the preceding description
 of nonlcon to see how to define the |
| gradient in nonlcon. | |

| MeritFunction | Use goal attainment/minimax merit
 function if set to 'multiobj '. Use
 fmincon merit function if set to |
| :--- | :--- |
| 'singleobj '. | |

| TolFun | Termination tolerance on the function
 value. |
| :--- | :--- |
| TolX | Termination tolerance on x. |
| TypicalX | Typical x values. The length of the
 vector is equal to the number of
 elements in x0, the starting point. |

Examples Consider a linear system of differential equations.

An output feedback controller, K , is designed producing a closed loop system

$$
\begin{aligned}
& \dot{x}=(A+B K C) x+B u \\
& y=C x
\end{aligned}
$$

The eigenvalues of the closed loop system are determined from the matrices A, B, C, and K using the command eig ($A+B * K * C$). Closed loop eigenvalues must lie on the real axis in the complex plane to the left of the points $[-5,-3,-1]$. In order not to saturate the inputs, no element in K can be greater than 4 or be less than -4 .

The system is a two-input, two-output, open loop, unstable system, with state-space matrices.

$$
A=\left[\begin{array}{ccc}
-0.5 & 0 & 0 \\
0 & -2 & 10 \\
0 & 1 & -2
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 0 \\
-2 & 2 \\
0 & 1
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The set of goal values for the closed loop eigenvalues is initialized as

```
goal = [-5,-3,-1];
```

To ensure the same percentage of under- or overattainment in the active objectives at the solution, the weighting matrix, weight, is set to abs(goal).

Starting with a controller, $\mathrm{K}=[-1,-1 ;-1,-1]$, first write an M-file, eigfun.m.

```
function F = eigfun(K,A,B,C)
F = sort(eig(A+B*K*C)); % Evaluate objectives
```

Next, enter system matrices and invoke an optimization routine.

```
A = [-0.5 0 0; 0 -2 10; 0 1 -2];
B = [1 0; -2 2; 0 1];
C = [1 0 0; 0 0 1];
KO = [-1 -1; -1 -1]; % Initialize controller matrix
goal = [-5 -3 -1]; % Set goal values for the eigenvalues
weight = abs(goal) % Set weight for same percentage
lb = -4*ones(size(KO)); % Set lower bounds on the controller
ub = 4*ones(size(KO)); % Set upper bounds on the controller
options = optimset('Display','iter'); % Set display parameter
[K,fval,attainfactor] = fgoalattain(@(K)eigfun(K,A,B,C) , ..
    K0,goal,weight,[],[],[],[],lb,ub,[],options)
```

You can run this example by using the demonstration script goaldemo. (From the MATLAB Help browser or the MathWorks Web site documentation, you can click the demo name to display the demo.) After about 12 iterations, a solution is

```
Active constraints:
            1
            2
            4
            9
            1 0
K =
    -4.0000 -0.2564
    -4.0000 -4.0000
fval =
    -6.9313
    -4.1588
```

-1.4099

```
attainfactor =
    -0.3863
```


Discussion

The attainment factor indicates that each of the objectives has been overachieved by at least 38.63% over the original design goals. The active constraints, in this case constraints 1 and 2 , are the objectives that are barriers to further improvement and for which the percentage of overattainment is met exactly. Three of the lower bound constraints are also active.

In the preceding design, the optimizer tries to make the objectives less than the goals. For a worst-case problem where the objectives must be as near to the goals as possible, use optimset to set the GoalsExactAchieve option to the number of objectives for which this is required.

Consider the preceding problem when you want all the eigenvalues to be equal to the goal values. A solution to this problem is found by invoking fgoalattain with the GoalsExactAchieve option set to 3 .

```
options = optimset('GoalsExactAchieve',3);
[K,fval,attainfactor] = fgoalattain(...
    @(K)eigfun(K,A,B,C),K0,goal,weight,[],[],[],[],lb,ub,[],...
options)
```

After about seven iterations, a solution is

```
K =
    -1.5954 1.2040
    -0.4201 -2.9046
fval =
    -5.0000
    -3.0000
    -1.0000
```


fgoalattain

$$
\begin{array}{r}
\text { attainfactor }= \\
1.0859 e-20
\end{array}
$$

In this case the optimizer has tried to match the objectives to the goals. The attainment factor (of $1.0859 \mathrm{e}-20$) indicates that the goals have been matched almost exactly.

Notes | This problem has discontinuities when the eigenvalues become complex; |
| :--- |
| this explains why the convergence is slow. Although the underlying |
| methods assume the functions are continuous, the method is able |
| to make steps toward the solution because the discontinuities do not |
| occur at the solution point. When the objectives and goals are complex, |
| fgoalattain tries to achieve the goals in a least-squares sense. |
| Algorithm |
| Multiobjective optimization concerns the minimization of a set of |
| objectives simultaneously. One formulation for this problem, and |
| implemented in fgoalattain, is the goal attainment problem of |
| Gembicki [3]. This entails the construction of a set of goal values for |
| the objective functions. Multiobjective optimization is discussed fully in |
| Chapter 3, "Standard Algorithms". |
| In this implementation, the slack variable γ is used as a dummy |
| argument to minimize the vector of objectives $F(x)$ simultaneously; |
| goal is a set of values that the objectives attain. Generally, prior to |

fgoalattain uses a sequential quadratic programming (SQP) method, which is described fully in Chapter 3, "Standard Algorithms". Modifications are made to the line search and Hessian. In the line search an exact merit function (see [1] and [4]) is used together with the merit function proposed by [5] and [6]. The line search is terminated when either merit function shows improvement. A modified Hessian, which takes advantage of the special structure of the problem, is also used (see [1] and [4]). A full description of the modifications used is
found in "Goal Attainment Method" on page 3-49 in "Introduction to Algorithms." Setting the MeritFunction option to 'singleobj' with

```
options = optimset(options,'MeritFunction','singleobj')
```

uses the merit function and Hessian used in fmincon.
attainfactor contains the value of γ at the solution. A negative value of γ indicates overattainment in the goals.

See also "SQP Implementation" on page 3-32 for more details on the algorithm used and the types of procedures displayed under the Procedures heading when the Display option is set to 'iter'.

Limitations

References

The objectives must be continuous. fgoalattain might give only local solutions.
[1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, "A New Algorithm for Statistical Circuit Design Based on Quasi-Newton Methods and Function Splitting," IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp 784-794, Sept. 1979.
[2] Fleming, P.J. and A.P. Pashkevich, Computer Aided Control System Design Using a Multi-Objective Optimisation Approach, Control 1985 Conference, Cambridge, UK, pp. 174-179.
[3] Gembicki, F.W., "Vector Optimization for Control with Performance and Parameter Sensitivity Indices," Ph.D. Dissertation, Case Western Reserve Univ., Cleveland, OH, 1974.
[4] Grace, A.C.W., "Computer-Aided Control System Design Using Optimization Techniques," Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.
[5] Han, S.P., "A Globally Convergent Method For Nonlinear Programming," Journal of Optimization Theory and Applications, Vol. 22, p. 297, 1977.
[6] Powell, M.J.D., "A Fast Algorithm for Nonlinear Constrained Optimization Calculations," Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Vol. 630, Springer Verlag, 1978.

See Also @ (function_handle), fmincon, fminimax, optimset

Purpose

Find minimum of single-variable function on fixed interval

Equation

Finds a minimum for a problem specified by

$$
\min _{x} f(x) \quad \text { such that } \quad x_{1}<x<x_{2}
$$

where x, x_{1}, and x_{2} are scalars and $f(x)$ is a function that returns a scalar.

Syntax

```
x = fminbnd(fun, x1,x2)
x = fminbnd(fun,x1,x2,options)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)
```


Description

fminbnd attempts to find a minimum of a function of one variable within a fixed interval.
$x=$ fminbnd (fun, $x 1, x 2$) returns a value x that is a local minimizer of the scalar valued function that is described in fun in the interval $\mathrm{x} 1<\mathrm{x}<\mathrm{x} 2$. fun is a function handle for either an M-file function or an anonymous function.
$x=$ fminbnd(fun, $x 1, x 2$, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
[$x, f v a l]=$ fminbnd (...) returns the value of the objective function computed in fun at the solution x.
[x,fval,exitflag] = fminbnd(...) returns a value exitflag that describes the exit condition of fminbnd.
[x,fval,exitflag,output] = fminbnd(...) returns a structure output that contains information about the optimization.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the objective function fun, if necessary.

fminbnd

Input Arguments

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into fminbnd. This section provides function-specific details for fun and options:
fun The function to be minimized. fun is a function handle for a function that accepts a scalar x and returns a scalar f , the objective function evaluated at x. The function fun can be specified as a function handle for an M-file function

```
x = fminbnd(@myfun,x1,x2)
```

where myfun is a MATLAB function such as

```
function f = myfun(x)
f = ... % Compute function value at x.
```

fun can also be a function handle for an anonymous function.

```
x = fminbnd(@(x)sin(x^2),x1,x2);
```

options "Options" on page 8-29 provides the function-specific details for the options values.
"Function Arguments" on page 6-2 contains general descriptions of arguments returned by fminbnd. This section provides function-specific details for exitflag and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated.

1 Function converged to a solution x.
$0 \quad$ Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.

| | -1 | Algorithm was terminated by the output
 function. |
| :--- | :--- | :--- |
| output | -2 | The bounds are inconsistent. |
| Structure containing information about the
 optimization. The fields of the structure are | | |
| iterations | | |
| funcCount | Number of iterations taken | |
| algorithm | Number of function evaluations | |
| message | Exit message | |

Options

Optimization options used by fminbnd. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 6-8 for detailed information.

| Display | Level of display. 'off' displays no output; ' iter'
 displays output at each iteration; ' final' ' displays
 just the final output; ' notify ' (default) displays
 output only if the function does not converge. |
| :--- | :--- |
| FunValCheck | Check whether objective function values are valid.
 'on' displays an error when the objective function
 returns a value that is complex or NaN. 'off'
 displays no error. |
| MaxFunEvals | Maximum number of function evaluations
 allowed. |
| MaxIter | Maximum number of iterations allowed. |
| OutputFcn | Specify one or more user-defined functions that an
 optimization function calls at each iteration. See |
| "Output Function" on page 6-16. | |

fminbnd

| PlotFcns | Plots various measures of progress while the
 algorithm executes, select from predefined plots
 or write your own. Specifying @optimplotx plots
 the current point; @optimplotfunccount plots the
 function count; @optimplotfval plots the function
 value. |
| :--- | :--- |
| TolX | Termination tolerance on x. |

Examples A minimum of $\sin (x)$ occurs at

```
x = fminbnd(@sin,0,2*pi)
x =
    4.7124
```

The value of the function at the minimum is

```
y = sin(x)
y =
    -1.0000
```

To find the minimum of the function

$$
f(x)=(x-3)^{2}-1
$$

on the interval $(0,5)$, first write an M-file.

```
function f = myfun(x)
f = (x-3)^2 - 1;
```

Next, call an optimization routine.

```
x = fminbnd(@myfun,0,5)
```

This generates the solution
x =
3

The value at the minimum is

$$
\begin{aligned}
& y=f(x) \\
& y=-1
\end{aligned}
$$

If fun is parameterized, you can use anonymous functions to capture the problem-dependent parameters. For example, suppose you want to minimize the objective function myfun defined by the following M-file function.

```
function f = myfun(x,a)
f = (x - a)^2;
```

Note that myfun has an extra parameter a, so you cannot pass it directly to fminbind. To optimize for a specific value of a, such as $a=1.5$.

1 Assign the value to a.

$$
a=1.5 ; \% \text { define parameter first }
$$

2 Call fminbnd with a one-argument anonymous function that captures that value of a and calls myfun with two arguments:

$$
x=\text { fminbnd }(@(x) \operatorname{myfun}(x, a), 0,1)
$$

Algorithm

fminbnd is an M-file. The algorithm is based on golden section search and parabolic interpolation. Unless the left endpoint x_{1} is very close to the right endpoint x_{2}, fminbnd never evaluates fun at the endpoints, so fun need only be defined for x in the interval $x_{1}<x<x_{2}$. If the minimum actually occurs at x_{1} or x_{2}, fminbnd returns an interior point at a distance of no more than $2 *$ TolX from x_{1} or x_{2}, where TolX is the termination tolerance. See [1] or [2] for details about the algorithm.

fminbnd

Limitations The function to be minimized must be continuous. fminbnd might only give local solutions.
fminbnd often exhibits slow convergence when the solution is on a boundary of the interval. In such a case, fmincon often gives faster and more accurate solutions.
fminbnd only handles real variables.
\section*{References [1] Forsythe, G.E., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, 1976.}
[2] Brent, Richard. P., Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
See Also
@ (function handle), fminsearch, fmincon, fminunc, optimset, anonymous functions

Purpose

Find minimum of constrained nonlinear multivariable function

Equation Finds the minimum of a problem specified by

$$
\begin{aligned}
& \min _{x} f(x) \text { subject to } \\
& c(x) \leq 0 \\
& c e q(x)=0 \\
& A \cdot x \leq b \\
& \text { Aeq } \cdot x=\text { beq } \\
& l b \leq x \leq u b
\end{aligned}
$$

where x, b, beq, $l b$, and $u b$ are vectors, A and $A e q$ are matrices, $c(x)$ and $\operatorname{ceq}(x)$ are functions that return vectors, and $f(x)$ is a function that returns a scalar. $f(x), c(x)$, and $c e q(x)$ can be nonlinear functions.

Syntax

```
x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun, x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun, x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun, x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval] = fmincon(...)
[x,fval,exitflag] = fmincon(...)
[x,fval,exitflag,output] = fmincon(...)
[x,fval,exitflag,output,lambda] = fmincon(...)
[x,fval,exitflag,output,lambda,grad] = fmincon(...)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)
```

Description
fmincon attempts to find a constrained minimum of a scalar function of several variables starting at an initial estimate. This is generally referred to as constrained nonlinear optimization or nonlinear programming.

fmincon

$x=$ fmincon(fun, $x 0, A, b)$ starts at $x 0$ and attempts to find a minimum x to the function described in fun subject to the linear inequalities $A^{*} x<=b$. x0 can be a scalar, vector, or matrix.
$x=$ fmincon (fun, $x 0, A, b, A e q, b e q)$ minimizes fun subject to the linear equalities Aeq*x = beq as well as $A^{*} x<=b$. Set $A=[]$ and $b=[]$ if no inequalities exist.
$x=$ fmincon(fun, $x 0, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables in x, so that the solution is always in the range $\mathrm{lb}<=\mathrm{x}<=\mathrm{ub}$. Set Aeq=[] and beq=[] if no equalities exist. Set $\operatorname{lb}(i)=-\operatorname{Inf}$ if $x(i)$ is unbounded below, and set $u b(i)=I n f$ if $x(i)$ is unbounded above.
$x=$ fmincon(fun, $x 0, A, b, A e q, b e q, l b, u b, n o n l c o n)$ subjects the minimization to the nonlinear inequalities $c(x)$ or equalities ceq (x) defined in nonlcon. fmincon optimizes such that $c(x)<=0$ and $\operatorname{ceq}(x)=0$. Set $\mathrm{lb}=[]$ and/or ub=[] if no bounds exist.
$x=$ fmincon(fun, $x 0, A, b, A e q, b e q, l b, u b, n o n l c o n, o p t i o n s) ~$ minimizes with the optimization options specified in the structure options. Use optimset to set these options. Set nonlcon = [] if there are no nonlinear inequality or equality constraints.
$[x, f v a l]=$ fmincon (...) returns the value of the objective function fun at the solution x.
[x,fval,exitflag] = fmincon(...) returns a value exitflag that describes the exit condition of fmincon.
[x,fval,exitflag,output] = fmincon(...) returns a structure output with information about the optimization.
[x,fval,exitflag,output,lambda] = fmincon(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x .
[x,fval,exitflag,output,lambda,grad] = fmincon(...) returns the value of the gradient of fun at the solution x.
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...) returns the value of the Hessian at the solution x. See "Hessian" on page 8-41.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the objective function fun, if necessary.

Input Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into fmincon. This section provides function-specific details for fun, nonlcon, and options:

$$
\begin{aligned}
& \text { fun The function to be minimized. fun is a function that } \\
& \text { accepts a vector } x \text { and returns a scalar } f \text {, the objective } \\
& \text { function evaluated at } x \text {. The function fun can be specified } \\
& \text { as a function handle for an M-file function } \\
& x=\text { fmincon (@myfun, } x 0, A, b \text {) } \\
& \text { where myfun is a MATLAB function such as } \\
& \text { function } f=\operatorname{myfun}(x) \\
& f=\ldots
\end{aligned} \quad \% \text { Compute function value at } x \text { a } \quad .
$$

fun can also be a function handle for an anonymous function.

$$
x=\operatorname{fmincon}\left(@(x) \operatorname{norm}(x)^{\wedge} 2, x 0, A, b\right) ;
$$

If the gradient of fun can also be computed and the GradObj option is 'on', as set by

```
options = optimset('GradObj','on')
```

then the function fun must return, in the second output argument, the gradient value g, a vector, at x. Note that by checking the value of nargout the function can avoid computing g when fun is called with only one output

fmincon

argument (in the case where the optimization algorithm only needs the value of f but not g).

```
function [f,g] = myfun(x)
f = .. % Compute the function value at x
if nargout > 1 % fun called with two output arguments
    g = ... % Compute the gradient evaluated at x
end
```

The gradient consists of the partial derivatives of f at the point x. That is, the ith component of g is the partial derivative of f with respect to the ith component of x.

If the Hessian matrix can also be computed and the Hessian option is 'on', i.e., options = optimset('Hessian','on'), then the function fun must return the Hessian value H, a symmetric matrix, at x in a third output argument. Note that by checking the value of nargout you can avoid computing H when fun is called with only one or two output arguments (in the case where the optimization algorithm only needs the values of f and g but not H).

```
function [f,g,H] = myfun(x)
f = ... % Compute the objective function value at x
if nargout > 1 % fun called with two output arguments
    g = ... % Gradient of the function evaluated at x
    if nargout > 2
        H = ... % Hessian evaluated at x
    end
end
```

The Hessian matrix is the second partial derivatives matrix of f at the point x. That is, the (i, j)th component of H is the second partial derivative of f with respect to x_{i} and $\mathrm{x}_{\mathrm{j}}, \partial^{2} f / \partial x_{i} \partial x_{j}$. The Hessian is by definition a symmetric matrix.
nonlcon The function that computes the nonlinear inequality constraints $\mathrm{c}(\mathrm{x})<=0$ and the nonlinear equality constraints $\operatorname{ceq}(x)=0$. The function nonlcon accepts a vector x and returns two vectors c and ceq. The vector c contains the nonlinear inequalities evaluated at x, and ceq contains the nonlinear equalities evaluated at x. The function nonlcon can be specified as a function handle.

$$
x=\text { fmincon(@myfun, x0, A, b, Aeq, beq, lb, ub, @mycon) }
$$

where mycon is a MATLAB function such as

```
function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.
```

If the gradients of the constraints can also be computed and the GradConstr option is 'on', as set by

```
options = optimset('GradConstr','on')
```

then the function nonlcon must also return, in the third and fourth output arguments, GC, the gradient of $c(x)$, and GCeq, the gradient of ceq (x). Note that by checking the value of nargout the function can avoid computing GC and GCeq when nonlcon is called with only two output arguments (in the case where the optimization algorithm only needs the values of c and ceq but not GC and GCeq).

Note Because the functions in the Optimization Toolbox only accept inputs of type double, user-supplied objective and nonlinear constraint functions must return outputs of type double.

fmincon

"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the nonlinear constraint function nonlcon, if necessary.

```
function [c,ceq,GC,GCeq] = mycon(x)
c = ... % Nonlinear inequalities at x
ceq = ... % Nonlinear equalities at x
if nargout > 2 % nonlcon called with 4 outputs
    GC = ... % Gradients of the inequalities
    GCeq = ... % Gradients of the equalities
end
```

If nonlcon returns a vector c of m components and x has length n, where n is the length of $x 0$, then the gradient GC of $c(x)$ is an n-by-m matrix, where $G C(i, j)$ is the partial derivative of $c(j)$ with respect to $x(i)$ (i.e., the j th column of GC is the gradient of the j th inequality constraint $\mathrm{c}(\mathrm{j})$). Likewise, if ceq has p components, the gradient GCeq of ceq (x) is an n-by-p matrix, where GCeq (i, j) is the partial derivative of ceq(j) with respect to $x(i)$ (i.e., the j th column of GCeq is the gradient of the j th equality constraint ceq(j)).
options "Options" on page 8-41 provides the function-specific details for the options values.

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments returned by fmincon. This section provides function-specific details for exitflag, lambda, and output:

| exitflag | Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated. | |
| :---: | :---: | :---: |
| | 1 | First-order optimality conditions were satisfied to the specified tolerance. |
| | 2 | Change in x was less than the specified tolerance. |
| | 3 | Change in the objective function value was less than the specified tolerance. |
| | 4 | Magnitude of the search direction was less than the specified tolerance and constraint violation was less than options.TolCon. |
| | 5 | Magnitude of directional derivative was less than the specified tolerance and constraint violation was less than options.TolCon. |
| | 0 | Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals. |
| | -1 | Algorithm was terminated by the output function. |
| | -2 | No feasible point was found. |
| grad | | |
| hessian | | |

fmincon

| lambda | Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields of the structure are | |
| :---: | :---: | :---: |
| | lower | Lower bounds lb |
| | upper | Upper bounds ub |
| | ineqlin | Linear inequalities |
| | eqlin | Linear equalities |
| | ineqnonlin | Nonlinear inequalities |
| | eqnonlin | Nonlinear equalities |
| output | Structure containing information about the optimization. The fields of the structure are | |
| | iterations | Number of iterations taken |
| | funcCount | Number of function evaluations |
| | algorithm | Algorithm used. |
| | cgiterations | Number of PCG iterations (large-scale algorithm only) |
| | stepsize | Final step size taken (medium-scale algorithm only) |
| | firstorderopt | Measure of first-order optimality |
| | | For large-scale bound constrained problems, the first-order optimality is the infinity norm of $v . * g$, where v is defined as in "Box Constraints" on page 4-10, and g is the gradient. |
| | | For large-scale problems with only linear equalities, the first-order optimality is the infinity norm of the projected gradient (i.e., |

the gradient projected onto the nullspace of Aeq).

Hessian

fmincon computes the output argument hessian as follows:

- When using the medium-scale algorithm, the function computes a quasi-Newton approximation to the Hessian of the Lagrangian at x.
- When using the large-scale algorithm, the function uses
- options. Hessian, if you supply it, to compute the Hessian at x.
- A finite-difference approximation to the Hessian at x, if you supply only the gradient. Note that because the large-scale algorithm does not take nonlinear constraints, the Hessian of the Lagrangian is the same as the Hessian of the objective function.

Options

Optimization options used by fmincon. Some options apply to all algorithms, some are only relevant when you are using the large-scale algorithm, and others are only relevant when you are using the medium-scale algorithm. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 6-8 for detailed information.
The LargeScale option specifies a preference for which algorithm to use. It is only a preference because certain conditions must be met to use the large-scale algorithm. For fmincon, you must provide the gradient (see the preceding description of fun to see how) or else the medium-scale algorithm is used:

LargeScale Use the large-scale algorithm if possible when set to 'on'. Use the medium-scale algorithm when set to 'off'.

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

fmincon

| DerivativeCheck | Compare user-supplied derivatives (gradients
 of the objective and constraints) to
 finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about the
 function to be minimized. |
| DiffMaxChange | Maximum change in variables for finite
 differencing. |
| DiffMinChange | Minimum change in variables for finite
 differencing.
 Level of display. 'off' displays no output;
 'iter' displays output at each iteration;
 'notify ' displays output only if the function
 does not converge;' final' (default) displays |
| just the final output. | |

| PlotFcns | Plots various measures of progress while the
 algorithm executes, select from predefined plots
 or write your own. Specifying @optimplotx plots
 the current point; @optimplotfunccount plots
 the function count; @optimplotfval plots the
 function value; @optimplotconstrviolation
 plots the maximum constraint violation;
 @optimplotstepsize plots the step size;
 @optimplotfirstorderopt plots the first-order
 of optimality. |
| :--- | :--- |
| TolFun | Termination tolerance on the function value. |
| TolCon | Termination tolerance on the constraint
 violation. |
| TolX | Termination tolerance on x. |
| TypicalX | Typical x values. |

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

| Hessian | If 'on', fmincon uses a user-defined Hessian
 (defined in fun), or Hessian information (when
 using HessMult), for the objective function. If
 'off', fmincon approximates the Hessian using
 finite differences. |
| :--- | :--- |
| HessMult | Function handle for Hessian multiply function.
 For large-scale structured problems, this function
 computes the Hessian matrix product H*Y
 without actually forming H. The function is of
 the form |

w = hmfun(Hinfo, Y, p1, p2, ...)

fmincon

where Hinfo and possibly the additional parameters p1, p2, .. contain the matrices used to compute $\mathrm{H}^{*} \mathrm{Y}$.

The first argument must be the same as the third argument returned by the objective function fun, for example by
[f,g,Hinfo] = fun(x)
Y is a matrix that has the same number of rows as there are dimensions in the problem. $\mathrm{W}=$ $\mathrm{H} * \mathrm{Y}$ although H is not formed explicitly. fminunc uses Hinfo to compute the preconditioner. The optional parameters $\mathrm{p} 1, \mathrm{p} 2, \ldots$ can be any additional parameters needed by hmfun. See "Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 for information on how to supply values for the parameters.

Note 'Hessian' must be set to 'on' for Hinfo to be passed from fun to hmfun.

See "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 2-60 for an example.

| HessPattern | Sparsity pattern of the Hessian for finite
 differencing. If it is not convenient to compute
 the sparse Hessian matrix H in fun, the
 large-scale method in fmincon can approximate
 H via sparse finite differences (of the gradient)
 provided the sparsity structure of H-i.e.,
 locations of the nonzeros-is supplied as the
 value for HessPattern. In the worst case, if the
 structure is unknown, you can set HessPattern
 to be a dense matrix and a full finite-difference
 approximation is computed at each iteration (this
 is the default). This can be very expensive for |
| :--- | :--- |
| large problems, so it is usually worth the effort to | |
| determine the sparsity structure. | |

fmincon

Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:
$\left.\begin{array}{ll}\text { MaxSQPIter } & \begin{array}{l}\text { Maximum number of SQP iterations } \\ \text { allowed. }\end{array} \\ \text { RelLineSrchBnd } & \begin{array}{l}\text { Relative bound (a real nonnegative } \\ \text { scalar value) on the line search } \\ \text { step length such that the total } \\ \text { displacement in x satisfies } \\ |\Delta x(i)| \leq \text { relLineS }\end{array} \\ \begin{array}{l}\text { This option provides control over the } \\ \text { magnitude of the displacements in }\end{array} \\ \text { x for cases in which the solver takes } \\ \text { steps that are considered too large. }\end{array}\right\}$

Examples

Find values of x that minimize $f(x)=-x_{1} x_{2} x_{3}$, starting at the point $\mathrm{x}=[10 ; 10 ; 10]$ and subject to the constraints:
$0 \leq x_{1}+2 x_{2}+2 x_{3} \leq 72$
First, write an M-file that returns a scalar value f of the function evaluated at x.

```
function f = myfun(x)
f = -x(1) * x(2) * x(3);
```

Then rewrite the constraints as both less than or equal to a constant,

$$
\begin{aligned}
& -x_{1}-2 x_{2}-2 x_{3} \leq 0 \\
& x_{1}+2 x_{2}+2 x_{3} \leq 72
\end{aligned}
$$

Since both constraints are linear, formulate them as the matrix inequality $A \cdot x \leq b$ where

$$
A=\left[\begin{array}{ccc}
-1 & -2 & -2 \\
1 & 2 & 2
\end{array}\right] \quad b=\left[\begin{array}{c}
0 \\
72
\end{array}\right]
$$

Next, supply a starting point and invoke an optimization routine.

```
x0 = [10; 10; 10]; % Starting guess at the solution
[x,fval] = fmincon(@myfun,x0,A,b)
```

After 66 function evaluations, the solution is

$$
x=
$$

24.0000
12.0000
12.0000
where the function value is

```
fval =
    -3.4560e+03
```

and linear inequality constraints evaluate to be less than or equal to 0 .

$$
\begin{array}{r}
A * x-b= \\
-72 \\
0
\end{array}
$$

Notes

Large-Scale Optimization

To use the large-scale method, you must

- Supply the gradient in fun
- Set GradObj to 'on' in options

fmincon

- Specify the feasible region using one, but not both, of the following types of constraints:
- Upper and lower bounds constraints.
- Linear equality constraints, in which the equality constraint matrix Aeq cannot have more rows than columns. Aeq is typically sparse.

You cannot use inequality constraints with the large-scale algorithm. If the preceding conditions are not met, fmincon reverts to the medium-scale algorithm.

The function fmincon returns a warning if no gradient is provided and the LargeScale option is not 'off'. fmincon permits $g(x)$ to be an approximate gradient but this option is not recommended; the numerical behavior of most optimization methods is considerably more robust when the true gradient is used. See Large-Scale Problem Coverage and Requirements on page 2-42 for more information on what problem formulations are covered and what information you must be provide.

The large-scale method in fmincon is most effective when the matrix of second derivatives, i.e., the Hessian matrix $H(x)$, is also computed. However, evaluation of the true Hessian matrix is not required. For example, if you can supply the Hessian sparsity structure (using the HessPattern option in options), fmincon computes a sparse finite-difference approximation to $H(x)$.

If $x 0$ is not strictly feasible, fmincon chooses a new strictly feasible (centered) starting point.

If components of x have no upper (or lower) bounds, then fmincon prefers that the corresponding components of ub (or lb) be set to Inf (or - Inf for lb) as opposed to an arbitrary but very large positive (or negative in the case of lower bounds) number.

Several aspects of linearly constrained minimization should be noted:

- A dense (or fairly dense) column of matrix Aeq can result in considerable fill and computational cost.
- fmincon removes (numerically) linearly dependent rows in Aeq; however, this process involves repeated matrix factorizations and therefore can be costly if there are many dependencies.
- Each iteration involves a sparse least-squares solution with matrix
$\overline{A e q}=A e q^{T} R^{-T}$
where R^{T} is the Cholesky factor of the preconditioner. Therefore, there is a potential conflict between choosing an effective preconditioner and minimizing fill in $\overline{A e q}$.

Medium-Scale Optimization

Better numerical results are likely if you specify equalities explicitly, using Aeq and beq, instead of implicitly, using $l b$ and ub.
If equality constraints are present and dependent equalities are detected and removed in the quadratic subproblem, 'dependent' is displayed under the Procedures heading (when you ask for output by setting the Display option to 'iter'). The dependent equalities are only removed when the equalities are consistent. If the system of equalities is not consistent, the subproblem is infeasible and 'infeasible' is displayed under the Procedures heading.

Algorithm

Large-Scale Optimization

The large-scale algorithm is a subspace trust region method and is based on the interior-reflective Newton method described in [1] and [2]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See the trust region and preconditioned conjugate gradient method descriptions in Chapter 4, "Large-Scale Algorithms".

Medium-Scale Optimization

fmincon uses a sequential quadratic programming (SQP) method. In this method, the function solves a quadratic programming (QP)

fmincon

subproblem at each iteration. An estimate of the Hessian of the Lagrangian is updated at each iteration using the BFGS formula (see fminunc and references [7] and [8]).

A line search is performed using a merit function similar to that proposed by [4], [5], and [6]. The QP subproblem is solved using an active set strategy similar to that described in [3]. A full description of this algorithm is found in "Constrained Optimization" on page 3-29 in Chapter 3, "Standard Algorithms".

See also "SQP Implementation" on page 3-32 for more details on the algorithm used.

Limitations

fmincon only handles real variables.
fmincon is a gradient-based method that is designed to work on problems where the objective and constraint functions are both continuous and have continuous first derivatives.
fmincon might only give local solutions.
When the problem is infeasible, fmincon attempts to minimize the maximum constraint value.

The objective function and constraint function must be real-valued; that is, they cannot return complex values.

The large-scale method does not allow equal upper and lower bounds. For example, if $\mathrm{lb}(2)==u b(2)$, then fmincon gives this error:

Equal upper and lower bounds not permitted in this large-scale method.
Use equality constraints and the medium-scale method instead.
If you have only equality constraints, you can still use the large-scale method. But if you have both equalities and bounds, you must use the medium-scale method.

[^0]
fminimax

Purpose
Equation
Solve minimax constraint problem

Finds the minimum of a problem specified by

$$
\begin{aligned}
& \min _{x} \max _{\left\{F_{i}\right]}\left\{F_{i}(x)\right\} \quad \text { such that } c(x) \leq 0 \\
& \operatorname{ceq}(x)=0 \\
& A \cdot x \leq b \\
& \text { Aeq } \cdot x=b e q \\
& l b \leq x \leq u b
\end{aligned}
$$

where $x, b, b e q, l b$, and $u b$ are vectors, A and Aeq are matrices, and $c(x), c e q(x)$, and $F(x)$ are functions that return vectors. $F(x), c(x)$, and $c e q(x)$ can be nonlinear functions.

Syntax

```
x = fminimax(fun,x0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x,A,b,Aeq,beq)
x = fminimax(fun, x,A,b,Aeq,beq,lb,ub)
x = fminimax(fun, x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun, x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval] = fminimax(...)
[x,fval,maxfval] = fminimax(...)
[x,fval,maxfval,exitflag] = fminimax(...)
[x,fval,maxfval,exitflag,output] = fminimax(...)
[x,fval,maxfval,exitflag,output,lambda] = fminimax(...)
```


Description

fminimax minimizes the worst-case value of a set of multivariable functions, starting at an initial estimate. This is generally referred to as the minimax problem.
$x=$ fminimax (fun, $x 0$) starts at $x 0$ and finds a minimax solution x to the functions described in fun.
$x=$ fminimax(fun, $x 0, A, b)$ solves the minimax problem subject to the linear inequalities $A^{*} x<=b$.
$x=$ fminimax (fun, $x, A, b, A e q, b e q)$ solves the minimax problem subject to the linear equalities Aeq* $x=$ beq as well. Set $A=[]$ and $b=[]$ if no inequalities exist.
$x=$ fminimax (fun, $x, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables in x, so that the solution is always in the range $1 b<=x<=u b$.
$x=$ fminimax (fun, $x 0, A, b, A e q, b e q, l b, u b, n o n l c o n)$ subjects the minimax problem to the nonlinear inequalities $c(x)$ or equality constraints ceq (x) defined in nonlcon. fminimax optimizes such that $c(x)<=0$ and ceq $(x)=0$. Set $1 b=[]$ and/or $u b=[]$ if no bounds exist.
$x=$ fminimax(fun, $x 0, A, b, A e q, b e q, l b, u b$, nonlcon, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
[x,fval] = fminimax (...) returns the value of the objective function fun at the solution x.
[x,fval,maxfval] = fminimax(...) returns the maximum function value at the solution x.
[x,fval,maxfval,exitflag] = fminimax(...) returns a value exitflag that describes the exit condition of fminimax.
[x,fval,maxfval,exitflag,output] = fminimax(...) returns a structure output with information about the optimization.
[x,fval,maxfval,exitflag,output,lambda] = fminimax(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the objective function fun, if necessary.

Input Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into fminimax. This section provides function-specific details for fun, nonlcon, and options:

fminimax

fun The function to be minimized. fun is a function that accepts a vector x and returns a vector F, the objective functions evaluated at x. The function fun can be specified as a function handle for an M -file function

```
x = fminimax(@myfun,x0)
```

where myfun is a MATLAB function such as

```
function F = myfun(x)
F = ... % Compute function values at x
```

fun can also be a function handle for an anonymous function.

$$
x=f m i n i m a x\left(@(x) \sin \left(x .{ }^{*} x\right), x 0\right) ;
$$

To minimize the worst case absolute values of any of the elements of the vector $F(x)$ (i.e., $\min \{\max \operatorname{abs}\{F(x)\}\}$), partition those objectives into the first elements of F and use optimset to set the MinAbsMax option to be the number of such objectives.

If the gradient of the objective function can also be computed and the GradObj option is 'on ', as set by

```
options = optimset('GradObj','on')
```

then the function fun must return, in the second output argument, the gradient value G, a matrix, at x. Note that by checking the value of nargout, the function can avoid computing G when myfun is called with only one output argument (in the case where the optimization algorithm only needs the value of F but not G).

```
function [F,G] = myfun(x)
F = ... % Compute the function values at x
if nargout > 1 % Two output arguments
```

```
    G = ... % Gradients evaluated at x
end
```

The gradient consists of the partial derivative $d F / d x$ of each F at the point x. If F is a vector of length m and x has length n , where n is the length of xO , then the gradient G of $F(x)$ is an n-by-m matrix where $G(i, j)$ is the partial derivative of $F(j)$ with respect to $x(i)$ (i.e., the j th column of G is the gradient of the j th objective function $F(j))$.
nonlcon The function that computes the nonlinear inequality constraints $\mathrm{c}(\mathrm{x})$ <= 0 and nonlinear equality constraints $\operatorname{ceq}(x)=0$. The function nonlcon accepts a vector x and returns two vectors c and ceq. The vector c contains the nonlinear inequalities evaluated at x, and ceq contains the nonlinear equalities evaluated at x. The function nonlcon can be specified as a function handle.

$$
x \text { = fminimax(@myfun, x0, A, b, Aeq, beq, lb, ub, @mycon) }
$$

where mycon is a MATLAB function such as

```
function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute nonlinear equalities at x
```

If the gradients of the constraints can also be computed and the GradConstr option is 'on', as set by

```
options = optimset('GradConstr','on')
```

then the function nonlcon must also return, in the third and fourth output arguments, GC, the gradient of $c(x)$, and GCeq, the gradient of ceq (x). Note that by checking the value of nargout the function can avoid computing GC and GCeq when nonlcon is called with only two output arguments (in the case where the optimization algorithm only needs the values of c and ceq but not GC and GCeq).

```
function [c,ceq,GC,GCeq] = mycon(x)
c = ... % Nonlinear inequalities at x
ceq = ... % Nonlinear equalities at x
if nargout > 2 % nonlcon called with 4 outputs
    GC = ... % Gradients of the inequalities 8-55
    GCeq = ... % Gradients of the equalities
end
```


fminimax

"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the nonlinear constraint function nonlcon, if necessary.
options "Options" on page 8-58 provides the function-specific details for the options values.

Output Arguments
"Function Arguments" on page 6-2 contains general descriptions of arguments returned by fminimax. This section provides function-specific details for exitflag, lambda, maxfval, and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated:

1

4

5

0

Function converged to a solution x .

Magnitude of the search direction less than the specified tolerance and constraint violation less than options.TolCon.
Magnitude of directional derivative less than the specified tolerance and constraint violation less than options.TolCon.

Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.
Algorithm was terminated by the output function.
No feasible point was found.

fminimax

| lambda | Structure containing the Lagrange multipliers at the solution \times (separated by constraint type). The fields of the structure are |
| :---: | :---: |
| | lower Lower bounds lb |
| | upper Upper bounds ub |
| | ineqlin Linear inequalities |
| | eqlin Linear equalities |
| | ineqnonlin Nonlinear inequalities |
| | eqnonlin Nonlinear equalities |
| maxfval | Maximum of the function values evaluated at the solution x, that is, maxfval $=\max \{f u n(x)\}$. |
| output | Structure containing information about the optimization. The fields of the structure are |
| | iterations Number of iterations taken. |
| | funcCount Number of function evaluations. |
| | algorithm Algorithm used. |

Options

Optimization options used by fminimax. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 6-8 for detailed information.

| DerivativeCheck | Compare user-supplied derivatives
 (gradients of the objective or constraints)
 to finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about
 the function to be minimized or solved. |

| DiffMaxChange | Maximum change in variables for
 finite-difference gradients. |
| :--- | :--- |
| DiffMinChange | Minimum change in variables for
 finite-difference gradients. |
| Display | Level of display. 'off' displays no
 output; 'iter' displays output at
 each iteration; 'notify' displays
 output only if the function does not
 converge; ' final' (default) displays just
 the final output. |
| FunValCheck | Check whether objective function and
 constraints values are valid. 'on'
 displays an error when the objective |
| function or constraints return a value | |
| that is complex, Inf, or NaN. 'off' | |
| displays no error. | |

fminimax

| MinAbsMax | Number of $F(x)$ to minimize the worst case absolute values. |
| :---: | :---: |
| OutputFen | Specify one or more user-defined functions that are called after each iteration of an optimization (medium scale algorithm only). See "Output Function" on page 6-16. |
| PlotFcns | Plots various measures of progress while the algorithm executes, select from predefined plots or write your own. Specifying @optimplotx plots the current point; @optimplotfunccount plots the function count; @optimplotfval plots the function value; @optimplotconstrviolation plots the maximum constraint violation; @optimplotstepsize plots the step size; @optimplotfirstorderopt plots the first-order of optimality. |
| RelLineSrchBnd | Relative bound (a real nonnegative scalar value) on the line search step length such that the total displacement in x satisfies $\|\Delta x(i)\| \leq$ relLineSrchBnd $\times \max (\|x(i)\|, \mid t y$ pical $x(i) \mid)$ |
| | This option provides control over the magnitude of the displacements in x for cases in which the solver takes steps that are considered too large. |
| RelLineSrchBndDuration | Number of iterations for which the bound specified in RelLineSrchBnd should be active (default is 1). |
| TolCon | Termination tolerance on the constraint violation. |

| TolFun | Termination tolerance on the function
 value. |
| :--- | :--- |
| TolX | Termination tolerance on x. |

Examples \quad Find values of x that minimize the maximum value of

$$
\left[f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x), f_{5}(x)\right]
$$

where

$$
\begin{aligned}
& f_{1}(x)=2 x_{1}^{2}+x_{2}^{2}-48 x_{1}-40 x_{2}+304 \\
& f_{2}(x)=-x_{2}^{2}-3 x_{2}^{2} \\
& f_{3}(x)=x_{1}+3 x_{2}-18 \\
& f_{4}(x)=-x_{1}-x_{2} \\
& f_{5}(x)=x_{1}+x_{2}-8
\end{aligned}
$$

First, write an M-file that computes the five functions at x .

```
function f = myfun(x)
f(1)= 2*x(1)^2+x(2)^2-48*x(1)-40*x(2)+304; % Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)=x(1) + 3*x(2) -18;
f(4)= -x(1)- x(2);
f(5)= x(1) + x(2) - 8;
```

Next, invoke an optimization routine.

```
x0 = [0.1; 0.1]; % Make a starting guess at solution
[x,fval] = fminimax(@myfun,x0)
```

After seven iterations, the solution is

```
x =
    4 . 0 0 0 0
```


fminimax

```
    4 . 0 0 0 0
fval =
    0.0000 -64.0000 -2.0000 -8.0000 -0.0000
```

Notes

Algorithm

You can set the number of objectives for which the worst case absolute values of F are minimized in the MinAbsMax option using optimset. You should partition these objectives into the first elements of F.

For example, consider the preceding problem, which requires finding values of x that minimize the maximum absolute value of

$$
\left[f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x), f_{5}(x)\right]
$$

Solve this problem by invoking fminimax with the commands

```
x0 = [0.1; 0.1]; % Make a starting guess at the solution
options = optimset('MinAbsMax',5); % Minimize absolute values
[x,fval] = fminimax(@myfun,x0,[],[],[],[],[],[],[],options);
```

After seven iterations, the solution is

```
x =
```

4.9256
2.0796
fval $=$
$37.2356-37.2356-6.8357-7.0052-0.9948$
If equality constraints are present, and dependent equalities are detected and removed in the quadratic subproblem, 'dependent' is displayed under the Procedures heading (when the Display option is set to 'iter'). The dependent equalities are only removed when the equalities are consistent. If the system of equalities is not consistent, the subproblem is infeasible and 'infeasible' is displayed under the Procedures heading.
fminimax uses a sequential quadratic programming (SQP) method [1]. Modifications are made to the line search and Hessian. In the line
search an exact merit function (see [2] and [4]) is used together with the merit function proposed by [3] and [5]. The line search is terminated when either merit function shows improvement. The function uses a modified Hessian that takes advantage of the special structure of this problem. Using optimset to set the MeritFunction option to 'singleobj' uses the merit function and Hessian used in fmincon.

See also "SQP Implementation" on page 3-32 for more details on the algorithm used and the types of procedures printed under the Procedures heading when you set the Display option to 'iter'.

Limitations

References

See Also

The function to be minimized must be continuous. fminimax might only give local solutions.
[1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, "A New Algorithm for Statistical Circuit Design Based on Quasi-Newton Methods and Function Splitting," IEEE Trans. Circuits and Systems, Vol. CAS-26, pp. 784-794, Sept. 1979.
[2] Grace, A.C.W., "Computer-Aided Control System Design Using Optimization Techniques," Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.
[3] Han, S.P., "A Globally Convergent Method For Nonlinear Programming," Journal of Optimization Theory and Applications, Vol. 22, p. 297, 1977.
[4] Madsen, K. and H. Schjaer-Jacobsen, "Algorithms for Worst Case Tolerance Optimization," IEEE Trans. of Circuits and Systems, Vol. CAS-26, Sept. 1979.
[5] Powell, M.J.D., "A Fast Algorithm for Nonlineary Constrained Optimization Calculations," Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Vol. 630, Springer Verlag, 1978.

```
@(function_handle), fgoalattain, lsqnonlin, optimset
```


fminsearch

Purpose Find minimum of unconstrained multivariable function using derivative-free method

Equation

Finds the minimum of a problem specified by

$$
\min _{x} f(x)
$$

where x is a vector and $f(x)$ is a function that returns a scalar.

Syntax \quad| | $x=$ fminsearch(fun,$x 0)$ |
| ---: | :--- |
| | $x=$ fminsearch(fun, $x 0$, options $)$ |
| | $[x, f v a l]=f m i n s e a r c h(\ldots)$ |
| | $[x, f v a l$, exitflag $]=$ fminsearch (\ldots) |
| | $[x, f v a l$, exitflag,output $]=$ fminsearch (\ldots) |

Description

fminsearch attempts to find a minimum of a scalar function of several variables, starting at an initial estimate. This is generally referred to as unconstrained nonlinear optimization.
$x=f m i n s e a r c h(f u n, x 0)$ starts at the point $x 0$ and attempts to find a local minimum x of the function described in fun. fun is a function handle for either an M-file function or an anonymous function. x0 can be a scalar, vector, or matrix.
$x=$ fminsearch(fun, $x 0$, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
[x,fval] = fminsearch(...) returns in fval the value of the objective function fun at the solution x.
[x,fval,exitflag] = fminsearch(...) returns a value exitflag that describes the exit condition of fminsearch.
[x,fval,exitflag,output] = fminsearch(...) returns a structure output that contains information about the optimization.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the objective function fun, if necessary.

Input Arguments

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into fminsearch. This section provides function-specific details for fun and options:
fun The function to be minimized. fun is a function handle for a function that accepts a vector x and returns a scalar f, the objective function evaluated at x. The function fun can be specified as a function handle for an M -file function
x = fminsearch(@myfun,x0)
where myfun is a MATLAB function such as

```
function f = myfun(x)
f = ... % Compute function value at x
```

fun can also be a function handle for an anonymous function, such as

$$
x=\text { fminsearch }\left(@(x) \operatorname{norm}(x)^{\wedge} 2, x 0, A, b\right) ;
$$

options "Options" on page 8-66 provides the function-specific details for the options values.
"Function Arguments" on page 6-2 contains general descriptions of arguments returned by fminsearch. This section provides function-specific details for exitflag and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated.

1
The function converged to a solution x .

fminsearch

| 0 | Number of iterations exceeded
 options.MaxIter or number of
 function evaluations exceeded
 options. FunEvals. |
| :--- | :--- |
| output | The algorithm was terminated by the
 output function. |
| Structure containing information about the
 optimization. The fields of the structure are
 algorithm
 funcCount
 iterations
 message | Algorithm used
 Number of function evaluations
 Number of iterations |
| Exit message | |

Options

Optimization options used by fminsearch. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 6-8 for detailed information.

| Display | Level of display. 'off' displays no output;
 'iter' displays output at each iteration;
 'final ' displays just the final output;
 'notify ' (default) displays output only if the
 function does not converge. |
| :--- | :--- |
| FunValCheck | Check whether objective function and
 constraints values are valid. 'on ' displays an
 error when the objective function or constraints
 return a value that is complex or NaN. 'off' |
| (the default) displays no error. | |

| OutputFen | Specify one or more user-defined functions that
 an optimization function calls at each iteration.
 See "Output Function" on page 6-16. |
| :--- | :--- |
| PlotFens | Plots various measures of progress while the
 algorithm executes, select from predefined plots
 or write your own. Specifying @optimplotx
 plots the current point; @optimplotfunccount
 plots the function count; @optimplotfval plots
 the function value. |
| TolFun | Termination tolerance on the function value. |
| TolX | Termination tolerance on x. |

Examples Example 1

A classic test example for multidimensional minimization is the Rosenbrock banana function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

The minimum is at $(1,1)$ and has the value 0 . The traditional starting point is $(-1.2,1)$. The anonymous function shown here defines the function and returns a function handle called banana:

```
banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^^2;
```

Pass the function handle to fminsearch:

```
[x,fval] = fminsearch(banana,[-1.2, 1])
```

This produces

```
x =
    1.0000 1.0000
fval =
```


fminsearch

8.1777e-010

This indicates that the minimizer was found to at least four decimal places with a value near zero.

Example 2

If fun is parameterized, you can use anonymous functions to capture the problem-dependent parameters. For example, suppose you want to minimize the objective function myfun defined by the following M-file function.

```
function f = myfun(x,a)
f = x(1)^^2 + a*x(2)^2;
```

Note that myfun has an extra parameter a, so you cannot pass it directly to fminsearch. To optimize for a specific value of a, such as a $=1.5$.

1 Assign the value to a.

$$
a=1.5 ; \% \text { define parameter first }
$$

2 Call fminsearch with a one-argument anonymous function that captures that value of a and calls myfun with two arguments:

```
x = fminsearch(@(x) myfun(x,a),0,1)
```


Example 3

You can modify the first example by adding a parameter a to the second term of the banana function:

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(a-x_{1}\right)^{2}
$$

This changes the location of the minimum to the point [$a, a^{\wedge} 2$]. To minimize this function for a specific value of a, for example $a=\operatorname{sqrt}(2)$, create a one-argument anonymous function that captures the value of a.

```
a = sqrt(2);
banana = @(x)100*(x(2)-x(1)^2)^2+(a-x(1) )^2;
```

Then the statement

```
[x,fval] = fminsearch(banana, [-1.2, 1], ...
    optimset('TolX',1e-8));
```

seeks the minimum [sqrt(2), 2] to an accuracy higher than the default on x.

Algorithms

Limitations

fminsearch uses the simplex search method of [1]. This is a direct search method that does not use numerical or analytic gradients as in fminunc.

If n is the length of x , a simplex in n -dimensional space is characterized by the $n+1$ distinct vectors that are its vertices. In two-space, a simplex is a triangle; in three-space, it is a pyramid. At each step of the search, a new point in or near the current simplex is generated. The function value at the new point is compared with the function's values at the vertices of the simplex and, usually, one of the vertices is replaced by the new point, giving a new simplex. This step is repeated until the diameter of the simplex is less than the specified tolerance.
fminsearch is generally less efficient than fminunc for problems of order greater than two. However, when the problem is highly discontinuous, fminsearch might be more robust.
fminsearch solves nondifferentiable problems and can often handle discontinuity, particularly if it does not occur near the solution. fminsearch might only give local solutions.
fminsearch only minimizes over the real numbers, that is, x must only consist of real numbers and $f(x)$ must only return real numbers. When x has complex variables, they must be split into real and imaginary parts.

fminsearch

Notes
fminsearch is not the preferred choice for solving problems that are sums of squares, that is, of the form

$$
\min _{x}(f(x))=f_{1}(x)^{2}+f_{2}(x)^{2}+f_{3}(x)^{2}+\ldots+f_{m}(x)^{2}
$$

Instead use the lsqnonlin function, which has been optimized for problems of this form.

References
[1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions," SIAM Journal of Optimization, Vol. 9, Number 1, pp. 112-147, 1998.

See Also

@ (function_handle), fminbnd, fminunc, optimset, anonymous functions

Purpose

Find minimum of unconstrained multivariable function

Equation

Finds the minimum of a problem specified by

$$
\min _{x} f(x)
$$

where x is a vector and $f(x)$ is a function that returns a scalar.

Syntax

```
x = fminunc(fun,x0)
x = fminunc(fun,x0,options)
[x,fval] = fminunc(...)
[x,fval,exitflag] = fminunc(...)
[x,fval,exitflag,output] = fminunc(...)
[x,fval,exitflag,output,grad] = fminunc(...)
[x,fval,exitflag,output,grad,hessian] = fminunc(...)
```


Description

fminunc attempts to find a minimum of a scalar function of several variables, starting at an initial estimate. This is generally referred to as unconstrained nonlinear optimization.
$x=$ fminunc (fun,$x 0$) starts at the point $x 0$ and attempts to find a local minimum x of the function described in fun. $x 0$ can be a scalar, vector, or matrix.
$x=$ fminunc(fun, $x 0$,options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
[$x, f v a l]=$ fminunc (...) returns in fval the value of the objective function fun at the solution x.
[x,fval,exitflag] = fminunc(...) returns a value exitflag that describes the exit condition.
[x,fval,exitflag,output] = fminunc(...) returns a structure output that contains information about the optimization.
[$x, f v a l, e x i t f l a g, o u t p u t, g r a d]=$ fminunc (...) returns in grad the value of the gradient of fun at the solution x.

fminunc

[x,fval,exitflag, output,grad,hessian] = fminunc(...) returns in hessian the value of the Hessian of the objective function fun at the solution x. See "Hessian" on page 8-75.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the objective function fun, if necessary.

Input Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into fminunc. This section provides function-specific details for fun and options:

> fun The function to be minimized. fun is a function that accepts a vector x and returns a scalar f, the objective function evaluated at x. The function fun can be specified as a function handle for an M-file function

```
x = fminunc(@myfun,x0)
```

where myfun is a MATLAB function such as

```
function f = myfun(x)
f=.. % Compute function value at x
```

fun can also be a function handle for an anonymous function.

```
x = fminunc(@(x)norm(x)^2,x0);
```

If the gradient of fun can also be computed and the GradObj option is 'on', as set by

```
options = optimset('GradObj','on')
```

then the function fun must return, in the second output argument, the gradient value g, a vector, at x. Note that by checking the value of nargout the function can avoid computing g when fun is called with only one output
argument (in the case where the optimization algorithm only needs the value of f but not g).

```
function [f,g] = myfun(x)
f = ... % Compute the function value at x
if nargout > 1 % fun called with 2 output arguments
    g = ... % Compute the gradient evaluated at x
end
```

The gradient is the partial derivatives $\partial f / \partial x$ of f at the point x. That is, the ith component of g is the partial derivative of f with respect to the ith component of x.
If the Hessian matrix can also be computed and the Hessian option is 'on', i.e., options = optimset('Hessian','on'), then the function fun must return the Hessian value H, a symmetric matrix, at x in a third output argument. Note that by checking the value of nargout you can avoid computing H when fun is called with only one or two output arguments (in the case where the optimization algorithm only needs the values of f and g but not H).

```
function [f,g,H] = myfun(x)
f = ... % Compute the objective function value at x
if nargout > 1 % fun called with two output arguments
    g = ... % Gradient of the function evaluated at x
    if nargout > 2
        H = ... % Hessian evaluated at x
    end
end
```

The Hessian matrix is the second partial derivatives matrix of f at the point x. That is, the (i, j)th component of H is the second partial derivative of f with respect to x_{i} and

fminunc

$\mathrm{x}_{\mathrm{j}}, \partial^{2} f / \partial x_{i} \partial x_{j}$. The Hessian is by definition a symmetric matrix.
options "Options" on page 8-75 provides the function-specific details for the options values.

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments returned by fminunc. This section provides function-specific details for exitflag and output:

exitflag | Integer identifying the reason the algorithm |
| :--- |
| terminated. The following lists the values of |
| exitflag and the corresponding reasons the |
| algorithm terminated. |.

1

2

3

0
-2
grad Gradient at x
hessian Hessian at x

Magnitude of gradient smaller than the specified tolerance.

Change in x was smaller than the specified tolerance.

Change in the objective function value was less than the specified tolerance.

Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.

Algorithm was terminated by the output function.

Line search cannot find an acceptable point along the current search direction.
\(\left.\left.$$
\begin{array}{ll}\text { output } & \begin{array}{l}\text { Structure containing information about the } \\
\text { optimization. The fields of the structure are }\end{array} \\
\text { iterations } & \text { Number of iterations taken } \\
\text { funcCount } & \text { Number of function evaluations }\end{array}
$$\right\} $$
\begin{array}{l}\text { algorithm } \\
\text { cgiterations }\end{array}
$$ \begin{array}{l}Algorithm used

Number of PCG iterations

(large-scale algorithm only)\end{array}\right\}\)| Final step size taken |
| :--- |
| (medium-scale algorithm only) |

Hessian

fminunc computes the output argument hessian as follows:

- When using the medium-scale algorithm, the function computes a finite-difference approximation to the Hessian at x using
- The gradient grad if you supply it
- The objective function fun if you do not supply the gradient
- When using the large-scale algorithm, the function uses
- options. Hessian, if you supply it, to compute the Hessian at x
- A finite-difference approximation to the Hessian at x, if you supply only the gradient

Options

fminunc uses these optimization options. Some options apply to all algorithms, some are only relevant when you are using the large-scale algorithm, and others are only relevant when you are using the medium-scale algorithm. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 6-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference, because certain conditions must be met to use the large-scale algorithm. For fminunc, you must provide the gradient

fminunc

(see the preceding description of fun) or else use the medium-scale algorithm:

```
LargeScale Use large-scale algorithm if possible when set to
    'on'. Use medium-scale algorithm when set to
    'off'.
```


Large-Scale and Medium-Scale Algorithms

These options are used by both the large-scale and medium-scale algorithms:

| DerivativeCheck | Compare user-supplied derivatives (gradient) to
 finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about the function
 to be minimized. |
| DiffMaxChange | Maximum change in variables for finite
 differencing. |
| DiffMinChange | Minimum change in variables for finite
 differencing. |
| Display | Level of display. 'off' displays no output; ' iter'
 displays output at each iteration; 'notify'
 displays output only if the function does not
 converge;' 'final' (default) displays just the final
 output. |
| FunValCheck | Check whether objective function values are
 valid. 'on' displays an error when the objective
 function return a value that is complex or NaN.
 'off' (the default) displays no error. |
| GradObj | Gradient for the objective function that you
 define. See the preceding description of fun to see |
| MaxFunEvals | how to define the gradient in fun. |
| Maximum number of function evaluations | |
| allowed. | |

| MaxIter | Maximum number of iterations allowed. |
| :--- | :--- |
| OutputFcn | Specify one or more user-defined functions that
 an optimization function calls at each iteration.
 See "Output Function" on page 6-16. |
| PlotFcns | Plots various measures of progress while the
 algorithm executes, select from predefined plots
 or write your own. Specifying @optimplotx plots
 the current point; @optimplotfunccount plots
 the function count; @optimplotfval plots the
 function value; @optimplotstepsize plots the
 step size; @optimplotfirstorderopt plots the |
| Tirst-order of optimality. | |

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

| Hessian | If 'on ', fminunc uses a user-defined Hessian (defined in fun), or Hessian information (when using HessMult), for the objective function. If 'off', fminunc approximates the Hessian using finite differences. |
| :---: | :---: |
| HessMult | Function handle for Hessian multiply function. For large-scale structured problems, this function computes the Hessian matrix product $\mathrm{H}^{*} \mathrm{Y}$ without actually forming H . The function is of the form |

fminunc

where Hinfo and possibly the additional parameters p1, p2,... contain the matrices used to compute $\mathrm{H}^{*} \mathrm{Y}$.

The first argument must be the same as the third argument returned by the objective function fun, for example by
[f,g,Hinfo] = fun(x)
Y is a matrix that has the same number of rows as there are dimensions in the problem. $\mathrm{W}=$ $\mathrm{H} * \mathrm{Y}$ although H is not formed explicitly. fminunc uses Hinfo to compute the preconditioner. The optional parameters p1, p2, ... can be any additional parameters needed by hmfun. See "Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 for information on how to supply values for the parameters.

Note 'Hessian' must be set to 'on' for Hinfo to be passed from fun to hmfun.

See "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 2-60 for an example.

fminunc

$\left.\begin{array}{ll}\text { HessPattern } & \begin{array}{l}\text { Sparsity pattern of the Hessian for finite } \\ \text { differencing. If it is not convenient to compute } \\ \text { the sparse Hessian matrix H in fun, the } \\ \text { large-scale method in fiminunc can approximate } \\ \text { H via sparse finite differences (of the gradient) } \\ \text { provided the sparsity structure of } \mathrm{H} \text {-i.e., }\end{array} \\ \text { locations of the nonzeros-is supplied as the } \\ \text { value for HessPattern. In the worst case, if the } \\ \text { structure is unknown, you can set HessPattern } \\ \text { to be a dense matrix and a full finite-difference } \\ \text { approximation is computed at each iteration } \\ \text { (this is the default). This can be very expensive } \\ \text { for large problems, so it is usually worth the } \\ \text { effort to determine the sparsity structure. }\end{array}\right\}$

fminunc

HessUpdate Method for choosing the search direction in the Quasi-Newton algorithm. The choices are

- 'bfgs'
- 'dfp'
- 'steepdesc'

See "Hessian Update" on page 3-11 for a description of these methods.
InitialHessMatrix Initial quasi-Newton matrix. This option is only available if you set InitialHessType to 'user-supplied'. In that case, you can set InitialHessMatrix to one of the following:

- scalar - the initial matrix is the scalar times the identity
- vector - the initial matrix is a diagonal matrix with the entries of the vector on the diagonal.

InitialHessType Initial quasi-Newton matrix type. The options are

- 'identity'
- 'scaled-identity'
- 'user-supplied'

Examples Minimize the function $f(x)=3 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$.
To use an M-file, create a file myfun.m.

```
function f = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function
```

Then call fminunc to find a minimum of myfun near [1,1].

```
x0 = [1,1];
[x,fval] = fminunc(@myfun,x0)
```

After a couple of iterations, the solution, x, and the value of the function at x, fval, are returned.

```
x =
    1.0e-006 *
    0.2541 -0.2029
fval =
    1.3173e-013
```

To minimize this function with the gradient provided, modify the M-file myfun.m so the gradient is the second output argument

```
function [f,g] = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function
if nargout > 1
    g(1) = 6*x(1)+2*x(2);
    g(2) = 2*x(1)+2*x(2);
end
```

and indicate that the gradient value is available by creating an optimization options structure with the GradObj option set to 'on' using optimset.

```
options = optimset('GradObj','on');
x0 = [1,1];
[x,fval] = fminunc(@myfun,x0,options)
```

After several iterations the solution, x, and fval, the value of the function at x, are returned.

fminunc

```
\(\mathrm{x}=\)
    1.0e-015 *
    \(0.1110-0.8882\)
```

fval =
6.2862e-031

To minimize the function $f(x)=\sin (x)+3$ using an anonymous function

```
f = @(x)sin(x)+3;
x = fminunc(f,4)
```

which returns a solution

$$
x=4.7124
$$

Notes

Algorithms

fminunc is not the preferred choice for solving problems that are sums of squares, that is, of the form

$$
\min _{x}(f(x))=f_{1}(x)^{2}+f_{2}(x)^{2}+f_{3}(x)^{2}+\ldots+f_{m}(x)^{2}
$$

Instead use the lsqnonlin function, which has been optimized for problems of this form.

To use the large-scale method, you must provide the gradient in fun (and set the GradObj option to 'on' using optimset). A warning is given if no gradient is provided and the LargeScale option is not 'off'.

Large-Scale Optimization

By default fminunc chooses the large-scale algorithm if you supplies the gradient in fun (and the GradObj option is set to ' on ' using optimset). This algorithm is a subspace trust region method and is based on the interior-reflective Newton method described in [2] and [3]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See
"Trust-Region Methods for Nonlinear Minimization" on page 4-3 and "Preconditioned Conjugate Gradients" on page 4-7.

Medium-Scale Optimization

fminunc, with the LargeScale option set to 'off ' with optimset, uses the BFGS Quasi-Newton method with a mixed quadratic and cubic line search procedure. This quasi-Newton method uses the BFGS ([1],[5],[8], and [9]) formula for updating the approximation of the Hessian matrix. You can select the DFP ([4],[6], and [7]) formula, which approximates the inverse Hessian matrix, by setting the HessUpdate option to 'dfp' (and the LargeScale option to 'off'). You can select a steepest descent method by setting HessUpdate to 'steepdesc' (and LargeScale to 'off'), although this is not recommended.

The default line search algorithm, i.e., when the LineSearchType option is set to 'quadcubic', is a safeguarded mixed quadratic and cubic polynomial interpolation and extrapolation method. You can select a safeguarded cubic polynomial method by setting the LineSearchType option to 'cubicpoly'. This second method generally requires fewer function evaluations but more gradient evaluations. Thus, if gradients are being supplied and can be calculated inexpensively, the cubic polynomial line search method is preferable. Chapter 3, "Standard Algorithms" fully describes the algorithms.

Limitations

The function to be minimized must be continuous. fminunc might only give local solutions.
fminunc only minimizes over the real numbers, that is, x must only consist of real numbers and $f(x)$ must only return real numbers. When x has complex variables, they must be split into real and imaginary parts.

Large-Scale Optimization

To use the large-scale algorithm, you must supply the gradient in fun (and GradObj must be set ' on ' in options). See Large-Scale Problem Coverage and Requirements on page 2-42 for more information on what problem formulations are covered and what information must be provided.

fminunc

> References

See Also
@(function_handle), fminsearch, optimset, anonymous functions

Purpose

Equation

Find minimum of semi-infinitely constrained multivariable nonlinear function

Finds the minimum of a problem specified by

$$
\begin{array}{ll}
\min _{x} f(x) \quad \text { subject to } & c(x) \leq 0, \\
& \text { ceq }(x)=0 \\
& A \cdot x \leq b \\
& A e q \cdot x=b e q \\
& l b \leq x \leq u b \\
& K_{1}\left(x, w_{1}\right) \leq 0 \\
& K_{2}\left(x, w_{2}\right) \leq 0 \\
& \cdots \\
& K_{n}\left(x, w_{n}\right) \leq 0
\end{array}
$$

where $x, b, b e q, l b$, and $u b$ are vectors, A and $A e q$ are matrices, $c(x)$, $c e q(x)$, and $K_{\mathrm{i}}\left(x, w_{\mathrm{i}}\right)$ are functions that return vectors, and $f(x)$ is a function that returns a scalar. $f(x), c(x)$, and $c e q(x)$ can be nonlinear functions. The vectors (or matrices) $K_{i}\left(x, w_{i}\right) \leq 0$ are continuous functions of both x and an additional set of variables $w_{1}, w_{2}, \ldots, w_{n}$. The variables $w_{1}, w_{2}, \ldots, w_{n}$ are vectors of, at most, length two.

Syntax

```
x = fseminf(fun, x0, ntheta,seminfcon)
x = fseminf(fun,x0,ntheta,seminfcon,A,b)
x = fseminf(fun, x0,ntheta,seminfcon,A,b,Aeq,beq)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,
    options)
[x,fval] = fseminf(...)
[x,fval,exitflag] = fseminf(...)
[x,fval,exitflag,output] = fseminf(...)
[x,fval,exitflag,output,lambda] = fseminf(...)
```


Description

fseminf finds a minimum of a semi-infinitely constrained scalar function of several variables, starting at an initial estimate. The aim is to minimize $f(x)$ so the constraints hold for all possible values of $w_{i} \in \Re^{1}$ (or $w_{i} \in \Re^{2}$). Because it is impossible to calculate all possible values of $K_{i}\left(x, w_{i}\right)$, a region must be chosen for w_{i} over which to calculate an appropriately sampled set of values.
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon) starts at $x 0$ and finds a minimum of the function fun constrained by ntheta semi-infinite constraints defined in seminfcon.
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b)$ also tries to satisfy the linear inequalities $A * x<=b$.
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b, A e q, b e q)$ minimizes subject to the linear equalities Aeq* $x=$ beq as well. Set $A=[]$ and $b=[]$ if no inequalities exist.
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables in x, so that the solution is always in the range $\mathrm{lb}<=\mathrm{x}<=\mathrm{ub}$.
x =
fseminf(fun, $x 0$, ntheta, seminfcon, $A, b, A e q, b e q, l b, u b, o p t i o n s) ~$ minimizes with the optimization options specified in the structure options. Use optimset to set these options.
[x,fval] = fseminf(...) returns the value of the objective function fun at the solution x.
[x,fval,exitflag] = fseminf(...) returns a value exitflag that describes the exit condition.
[x,fval,exitflag,output] = fseminf(...) returns a structure output that contains information about the optimization.
[x,fval,exitflag,output,lambda] = fseminf(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x .
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the objective function fun, if necessary.

Input Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into fseminf. This section provides function-specific details for fun, ntheta, options, and seminfcon:
fun The function to be minimized. fun is a function that accepts a vector x and returns a scalar f, the objective function evaluated at x. The function fun can be specified as a function handle for an M -file function

$$
x=\text { fseminf(@myfun, x0, ntheta, seminfcon })
$$

where myfun is a MATLAB function such as

```
function f = myfun(x)
f = ... % Compute function value at x
```

fun can also be a function handle for an anonymous function.

$$
\text { fun }=@(x) \sin \left(x^{\prime} '^{*} x\right) ;
$$

If the gradient of fun can also be computed and the GradObj option is 'on', as set by

```
options = optimset('GradObj','on')
```

then the function fun must return, in the second output argument, the gradient value g, a vector, at x. Note that by checking the value of nargout the function can avoid computing g when fun is called with only one output argument (in the case where the optimization algorithm only needs the value of f but not g).

```
function [f,g] = myfun(x)
```

```
f = ... % Compute the function value at x
if nargout > 1 % fun called with 2 output arguments
    g = ... % Compute the gradient evaluated at x
end
```

The gradient is the partial derivatives of f at the point x. That is, the ith component of g is the partial derivative of f with respect to the ith component of x.
ntheta The number of semi-infinite constraints.
options "Options" on page 8-91 provides the function-specific details for the options values.
seminfcon The function that computes the vector of nonlinear inequality constraints, c , a vector of nonlinear equality constraints, ceq, and ntheta semi-infinite constraints (vectors or matrices) K1, K2,..., Kntheta evaluated over an interval S at the point x. The function seminfcon can be specified as a function handle.

```
x = fseminf(@myfun,x0,ntheta,@myinfcon)
```

where myinfcon is a MATLAB function such as

```
function [c,ceq,K1,K2,...,Kntheta,S] = myinfcon(x,S)
% Initial sampling interval
if isnan(S(1,1)),
    S = ...% S has ntheta rows and 2 columns
end
w1 = ...% Compute sample set
w2 = ...% Compute sample set
wntheta = ... % Compute sample set
K1 = ... % 1st semi-infinite constraint at x and w
K2 = ... % 2nd semi-infinite constraint at x and w
Kntheta = ...% Last semi-infinite constraint at x and w
```

```
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute the nonlinear equalities at x
```

S is a recommended sampling interval, which might or might not be used. Return [] for c and ceq if no such constraints exist.

The vectors or matrices K1, K2, ..., Kntheta contain the semi-infinite constraints evaluated for a sampled set of values for the independent variables $w 1$, w2, ... wntheta, respectively. The two-column matrix, S, contains a recommended sampling interval for values of w1, w2, ..., wntheta, which are used to evaluate K1, K2, ..., Kntheta. The ith row of S contains the recommended sampling interval for evaluating Ki . When $K i$ is a vector, use only $S(i, 1)$ (the second column can be all zeros). When $K i$ is a matrix, $S(i, 2)$ is used for the sampling of the rows in $\mathrm{Ki}, \mathrm{S}(\mathrm{i}, 1)$ is used for the sampling interval of the columns of Ki (see "Two-Dimensional Example" on page 8-96). On the first iteration S is NaN , so that some initial sampling interval must be determined by seminfcon.

Note Because the functions in the Optimization Toolbox only accept inputs of type double, user-supplied objective and nonlinear constraint functions must return outputs of type double.
> "Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize seminfcon, if necessary.

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments returned by fseminf. This section provides function-specific details for exitflag, lambda, and output:

| exitflag | Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated. | |
| :---: | :---: | :---: |
| | 1 | Function converged to a solution x . |
| | 4 | Magnitude of the search direction was less than the specified tolerance and constraint violation was less than options.TolCon. |
| | 5 | Magnitude of directional derivative was less than the specified tolerance and constraint violation was less than options.TolCon. |
| | 0 | Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals. |
| | -1 | Algorithm was terminated by the output function. |
| | -2 | No feasible point was found. |
| lambda | Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields of the structure are | |
| | lower | Lower bounds lb |
| | upper | Upper bounds ub |
| | ineqlin | Linear inequalities |
| | eqlin | Linear equalities |
| | ineqnonl | Nonlinear inequalities |
| | eqnonlin | Nonlinear equalities |

output | Structure containing information about the |
| :--- |
| optimization. The fields of the structure are |
| iterations Number of iterations taken |
| funcCount Number of function evaluations |
| algorithm Algorithm used |
| stepsize Final step size taken |

Optimization options used by fseminf. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 6-8 for detailed information.
$\left.\begin{array}{ll}\text { DerivativeCheck } & \begin{array}{l}\text { Compare user-supplied derivatives } \\ \text { (gradients) to finite-differencing } \\ \text { derivatives. }\end{array} \\ \text { Diagnostics } & \begin{array}{l}\text { Display diagnostic information about the } \\ \text { function to be minimized or solved. }\end{array} \\ \text { DiffMaxChange } & \begin{array}{l}\text { Maximum change in variables for } \\ \text { finite-difference gradients. }\end{array} \\ \text { DiffMinChange } & \begin{array}{l}\text { Minimum change in variables for } \\ \text { finite-difference gradients. }\end{array} \\ \text { Display } & \begin{array}{l}\text { Level of display. 'off ' displays no } \\ \text { output; 'iter' displays output at each } \\ \text { iteration; 'notify ' displays output only }\end{array} \\ \text { if the function does not converge;' final' } \\ \text { (default) displays just the final output. }\end{array}\right\}$
$\left.\left.\left.\begin{array}{ll}\text { GradObj } & \begin{array}{l}\text { Gradient for the objective function } \\ \text { defined by the user. See the preceding } \\ \text { description of fun to see how to define the } \\ \text { gradient in fun. }\end{array} \\ \text { MaxFunEvals } \\ \text { MaxIter } \\ \text { OutputFcn } \\ \text { allowed. } \\ \text { Maximum number of iterations allowed. }\end{array}\right\} \begin{array}{l}\text { Specify one or more user-defined functions } \\ \text { that an optimization function calls at } \\ \text { each iteration. See "Output Function" on } \\ \text { page 6-16. }\end{array}\right\} \begin{array}{l}\text { Plots various measures of progress } \\ \text { while the algorithm executes, } \\ \text { select from predefined plots } \\ \text { or write your own. Specifying } \\ \text { @optimplotx plots the current point; } \\ \text { @optimplotfunccount plots the function } \\ \text { count; @optimplotfval plots the function } \\ \text { value; @optimplotconstrviolation } \\ \text { plots the maximum constraint violation; } \\ \text { @optimplotstepsize plots the step size. }\end{array}\right\}$

TolCon

TolFun

TolX

Termination tolerance on the constraint violation.

Termination tolerance on the function value.

Termination tolerance on x.

Notes The optimization routine fseminf might vary the recommended

 sampling interval, S , set in seminfcon, during the computation because values other than the recommended interval might be more appropriate for efficiency or robustness. Also, the finite region w_{i}, over which $K_{i}\left(x, w_{i}\right)$ is calculated, is allowed to vary during the optimization, provided that it does not result in significant changes in the number of local minima in $K_{i}\left(x, w_{i}\right)$.
Examples One-Dimensional Example

Find values of x that minimize

$$
f(x)=\left(x_{1}-0.5\right)^{2}+\left(x_{2}-0.5\right)^{2}+\left(x_{3}-0.5\right)^{2}
$$

where

$$
\begin{aligned}
& K_{1}\left(x, w_{1}\right)=\sin \left(w_{1} x_{1}\right) \cos \left(w_{1} x_{2}\right)-\frac{1}{1000}\left(w_{1}-50\right)^{2}-\sin \left(w_{1} x_{3}\right)-x_{3} \leq 1 \\
& K_{2}\left(x, w_{2}\right)=\sin \left(w_{2} x_{2}\right) \cos \left(w_{2} x_{1}\right)-\frac{1}{1000}\left(w_{2}-50\right)^{2}-\sin \left(w_{2} x_{3}\right)-x_{3} \leq 1
\end{aligned}
$$

for all values of w_{1} and w_{2} over the ranges

$$
\begin{aligned}
& 1 \leq w_{1} \leq 100 \\
& 1 \leq w_{2} \leq 100
\end{aligned}
$$

Note that the semi-infinite constraints are one-dimensional, that is, vectors. Because the constraints must be in the form $K_{i}\left(x, w_{i}\right) \leq 0$ you need to compute the constraints as

$$
\begin{aligned}
& K_{1}\left(x, w_{1}\right)=\sin \left(w_{1} x_{1}\right) \cos \left(w_{1} x_{2}\right)-\frac{1}{1000}\left(w_{1}-50\right)^{2}-\sin \left(w_{1} x_{3}\right)-x_{3}-1 \leq 0 \\
& K_{2}\left(x, w_{2}\right)=\sin \left(w_{2} x_{2}\right) \cos \left(w_{2} x_{1}\right)-\frac{1}{1000}\left(w_{2}-50\right)^{2}-\sin \left(w_{2} x_{3}\right)-x_{3}-1 \leq 0
\end{aligned}
$$

First, write an M-file that computes the objective function.

```
function f = myfun(x,s)
% Objective function
f = sum((x-0.5).^2);
```

Second, write an M-file, mycon.m, that computes the nonlinear equality and inequality constraints and the semi-infinite constraints.

```
function [c,ceq,K1,K2,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
        s = [0.2 0; 0.2 0];
end
% Sample set
w1 = 1:s(1,1):100;
w2 = 1:s(2,1):100;
% Semi-infinite constraints
K1 = sin(w1*X(1)).*cos(w1*X(2)) - 1/1000*(w1-50).^2 -...
    sin(w1*x(3))-x(3)-1;
K2 = sin(w2*X(2)).*cos(w2*X(1)) - 1/1000*(w2-50).^2 -...
    sin(w2*x(3))-X(3)-1;
% No finite nonlinear constraints
c = []; ceq=[];
% Plot a graph of semi-infinite constraints
plot(w1,K1,'-',w2,K2,':'),title('Semi-infinite constraints')
drawnow
```

Then, invoke an optimization routine.

```
x0 = [0.5; 0.2; 0.3]; % Starting guess
[x,fval] = fseminf(@myfun,x0,2,@mycon)
```

After eight iterations, the solution is
x =

$$
0.6673
$$

$$
0.3013
$$

$$
0.4023
$$

The function value and the maximum values of the semi-infinite constraints at the solution x are

```
fval =
    0.0770
[c,ceq,K1,K2] = mycon(x,NaN); % Use initial sampling interval
max(K1)
ans =
    -0.0017
max(K2)
ans =
    -0.0845
```

A plot of the semi-infinite constraints is produced.

This plot shows how peaks in both constraints are on the constraint boundary.

The plot command inside 'mycon.m' slows down the computation. Remove this line to improve the speed.

Two-Dimensional Example

Find values of x that minimize

$$
f(x)=\left(x_{1}-0.2\right)^{2}+\left(x_{2}-0.2\right)^{2}+\left(x_{3}-0.2\right)^{2}
$$

where

$$
\begin{aligned}
K_{1}(x, w)= & \sin \left(w_{1} x_{1}\right) \cos \left(w_{2} x_{2}\right)-\frac{1}{1000}\left(w_{1}-50\right)^{2}-\sin \left(w_{1} x_{3}\right)-x_{3}+\ldots \\
& \sin \left(w_{2} x_{2}\right) \cos \left(w_{1} x_{1}\right)-\frac{1}{1000}\left(w_{2}-50\right)^{2}-\sin \left(w_{2} x_{3}\right)+-x_{3} \leq 1.5
\end{aligned}
$$

for all values of w_{1} and w_{2} over the ranges

$$
\begin{aligned}
& 1 \leq w_{1} \leq 100 \\
& 1 \leq w_{2} \leq 100
\end{aligned}
$$

starting at the point $x=[0.25,0.25,0.25]$.
Note that the semi-infinite constraint is two-dimensional, that is, a matrix.

First, write an M-file that computes the objective function.

```
function f = myfun(x,s)
% Objective function
f = sum((x-0.2).^2);
```

Second, write an M-file for the constraints, called mycon.m. Include code to draw the surface plot of the semi-infinite constraint each time mycon is called. This enables you to see how the constraint changes as X is being minimized.

```
function [c,ceq,K1,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
    s = [2 2];
end
% Sampling set
w1x = 1:s(1,1):100;
w1y = 1:s(1,2):100;
[wx,wy] = meshgrid(w1x,w1y);
% Semi-infinite constraint
K1 = sin(wx*x(1)).* cos(wx*X(2))-1/1000*(wx-50).^2 -...
    sin(wx*X(3))-X(3)+sin(wy*X(2)). *cos(wx*x(1)) - ...
    1/1000*(wy-50).^2-sin(wy*x(3))-X(3)-1.5;
% No finite nonlinear constraints
c = []; ceq=[];
```

```
% Mesh plot
m = surf(wx,wy,K1,'edgecolor','none','facecolor','interp');
camlight headlight
title('Semi-infinite constraint')
drawnow
```

Next, invoke an optimization routine.

```
x0 = [0.25, 0.25, 0.25]; % Starting guess
[x,fval] = fseminf(@myfun,x0,1,@mycon)
```

After nine iterations, the solution is
$x=$

$$
0.2926 \quad 0.1874 \quad 0.2202
$$

and the function value at the solution is

```
fval =
    0.0091
```

The goal was to minimize the objective $f(x)$ such that the semi-infinite constraint satisfied $K_{1}(x, w) \leq 1.5$. Evaluating mycon at the solution x and looking at the maximum element of the matrix K1 shows the constraint is easily satisfied.

```
[c,ceq,K1] = mycon(x,[0.5,0.5]); % Sampling interval 0.5
max(max(K1))
ans =
    -0.0027
```

This call to mycon produces the following surf plot, which shows the semi-infinite constraint at x.

Algorithm

fseminf uses cubic and quadratic interpolation techniques to estimate peak values in the semi-infinite constraints. The peak values are used to form a set of constraints that are supplied to an SQP method as in the function fmincon. When the number of constraints changes, Lagrange multipliers are reallocated to the new set of constraints.

The recommended sampling interval calculation uses the difference between the interpolated peak values and peak values appearing in the data set to estimate whether the function needs to take more or fewer points. The function also evaluates the effectiveness of the interpolation by extrapolating the curve and comparing it to other points in the curve. The recommended sampling interval is decreased when the peak values are close to constraint boundaries, i.e., zero.
See also "SQP Implementation" on page 3-32 for more details on the algorithm used and the types of procedures displayed under the Procedures heading when the Display option is set to 'iter' with optimset.

Limitations | The function to be minimized, the constraints, and semi-infinite |
| :--- |
| constraints, must be continuous functions of x and w. fseminf might |
| only give local solutions. |
| When the problem is not feasible, fseminf attempts to minimize the |
| maximum constraint value. |

See Also @(function_handle), fmincon, optimset

Purpose Solve system of nonlinear equations

Equation

Solves a problem specified by

$$
F(x)=0
$$

for x, where x is a vector and $F(x)$ is a function that returns a vector value.

Syntax

```
x = fsolve(fun,x0)
x = fsolve(fun,x0,options)
[x,fval] = fsolve(fun,x0)
[x,fval,exitflag] = fsolve(...)
[x,fval,exitflag,output] = fsolve(...)
[x,fval,exitflag,output,jacobian] = fsolve(...)
```


Description

fsolve finds a root (zero) of a system of nonlinear equations.
$x=$ fsolve(fun, $x 0$) starts at $x 0$ and tries to solve the equations described in fun.
$x=$ fsolve(fun, $x 0$, options) solves the equations with the optimization options specified in the structure options. Use optimset to set these options.
[$x, f v a l]=$ fsolve(fun, $x 0$) returns the value of the objective function fun at the solution x.
[x,fval,exitflag] = fsolve(...) returns a value exitflag that describes the exit condition.
[x,fval,exitflag,output] = fsolve(...) returns a structure output that contains information about the optimization.
[x,fval,exitflag,output,jacobian] = fsolve(...) returns the Jacobian of fun at the solution x.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the objective function fun, if necessary.
"Function Arguments" on page 6-2 contains general descriptions of arguments passed into fsolve. This section provides function-specific details for fun and options:
> fun The nonlinear system of equations to solve. fun is a function that accepts a vector x and returns a vector F, the nonlinear equations evaluated at x. The function fun can be specified as a function handle for an M-file function

$$
x=\text { fsolve(@myfun, x0) }
$$

where myfun is a MATLAB function such as

```
function F = myfun(x)
F=... % Compute function values at }
```

fun can also be a function handle for an anonymous function.

```
x = fsolve(@(x)sin(x.*x),x0);
```

If the Jacobian can also be computed and the Jacobian option is 'on', set by

```
options = optimset('Jacobian','on')
```

then the function fun must return, in a second output argument, the Jacobian value J, a matrix, at x. Note that by checking the value of nargout, the function can avoid computing J when fun is called with only one output argument (in the case where the optimization algorithm only needs the value of F but not J).

```
function [F,J] = myfun(x)
F = ... % objective function values at x
if nargout > 1 % two output arguments
```

```
    J = ... % Jacobian of the function evaluated at x
end
```

If fun returns a vector (matrix) of m components and x has length n, where n is the length of $x 0$, then the Jacobian J is an m-by-n matrix where $J(i, j)$ is the partial derivative of $F(i)$ with respect to $\times(j)$. (Note that the Jacobian J is the transpose of the gradient of F.)
options "Options" on page 8-104 provides the function-specific details for the options values.

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments returned by fsolve. For more information on the output headings for fsolve, see "Function-Specific Output Headings" on page 2-82.

This section provides function-specific details for exitflag and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated.

1
2

3

4
$0 \quad$ Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.

fsolve

$\left.\begin{array}{lll}-1 & \begin{array}{l}\text { Algorithm was terminated by the } \\ \text { output function. } \\ \text { Algorithm appears to be converging } \\ \text { to a point that is not a root. }\end{array} \\ \text { output } & -2 & \begin{array}{l}\text { Trust radius became too small. }\end{array} \\ \text { Line search cannot sufficiently } \\ \text { decrease the residual along the } \\ \text { current search direction. }\end{array}\right\}$

Options

Optimization options used by fsolve. Some options apply to all algorithms, some are only relevant when using the large-scale algorithm, and others are only relevant when using the medium-scale algorithm. You can use optimset to set or change the values of these fields in the options structure, options. See "Optimization Options" on page 6-8 for detailed information.

fsolve

The LargeScale option specifies a preference for which algorithm to use. It is only a preference because certain conditions must be met to use the large-scale algorithm. For fsolve, the nonlinear system of equations cannot be underdetermined; that is, the number of equations (the number of elements of F returned by fun) must be at least as many as the length of x or else the medium-scale algorithm is used:

| LargeScale | Use large-scale algorithm if possible when set to
 'on'. Use medium-scale algorithm when set to
 'off'. The default for fsolve is 'off'. |
| :--- | :--- |

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

| DerivativeCheck | Compare user-supplied derivatives (Jacobian) to
 finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about the function
 to be solved. |
| DiffMaxChange | Maximum change in variables for finite
 differencing. |
| DiffMinChange | Minimum change in variables for finite
 differencing. |
| Display | Level of display. ' off ' displays no output;
 'iter' displays output at each iteration; 'final' '
 (default) displays just the final output. |
| FunValCheck | Check whether objective function values are
 valid. 'on' displays an error when the objective
 function returns a value that is complex, Inf, or
 NaN. 'off' (the default) displays no error. |

| Jacobian | If 'on', fsolve uses a user-defined Jacobian
 (defined in fun), or Jacobian information (when
 using JacobMult), for the objective function. If
 'off', fsolve approximates the Jacobian using
 finite differences. |
| :--- | :--- |
| MaxFunEvals | Maximum number of function evaluations
 allowed. |
| MaxIter | Maximum number of iterations allowed. |
| OutputFcn | Specify one or more user-defined functions that
 an optimization function calls at each iteration. |
| PlotFcns | See "Output Function" on page 6-16. |
| | Plots various measures of progress while the
 algorithm executes, select from predefined plots
 or write your own. Specifying @optimplotx plots
 the current point; @optimplotfunccount plots
 the function count; @optimplotfval plots the
 function value; @optimplotresnorm plots the
 norm of the residuals; @optimplotstepsize plots
 the step size; @optimplotfirstorderopt plots |
| the first-order of optimality. | |

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

Function handle for Jacobian multiply function. For large-scale structured problems, this function computes the Jacobian matrix product $J * Y, J^{\prime *} Y$, or $J^{\prime *}(J * Y)$ without actually forming J. The function is of the form

```
W = jmfun(Jinfo,Y,flag,p1,p2,...)
```

where Jinfo and the additional parameters p1, p2,... contain the matrices used to compute $J * Y$ (or $J^{\prime *}$ Y, or $J^{\prime *}(J * Y)$). The first argument Jinfo must be the same as the second argument returned by the objective function fun, for example by

$$
[F, J i n f o]=\text { fun }(x)
$$

Y is a matrix that has the same number of rows as there are dimensions in the problem. flag determines which product to compute:

- If flag == 0 then $W=J^{\prime *}(J * Y)$.
- If flag > 0 then $W=J * Y$.
- If flag < 0 then $W=J^{\prime *}$.

In each case, J is not formed explicitly. fsolve uses Jinfo to compute the preconditioner. The optional parameters p1, p2, ... can be any additional parameters needed by jmfun. See "Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 for information on how to supply values for these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo to be passed from fun to jmfun.

| JacobPattern | See "Nonlinear Minimization with a Dense but
 Structured Hessian and Equality Constraints"
 on page 2-60 for a similar example. |
| :--- | :--- |
| Sparsity pattern of the Jacobian for finite
 differencing. If it is not convenient to compute
 the Jacobian matrix J in fun, lsqnonlin can
 approximate J via sparse finite differences
 provided the structure of J-i.e., locations
 of the nonzeros-is supplied as the value
 for JacobPattern. In the worst case, if the
 structure is unknown, you can set JacobPattern
 to be a dense matrix and a full finite-difference | |
| approximation is computed in each iteration | |
| (this is the default if JacobPattern is not set). | |

but produces a better quality step towards the solution.
TolPCG
Termination tolerance on the PCG iteration.

Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:
NonlEqnAlgorithm Specify one of the following algorithms for solving nonlinear equations:

- 'dogleg' - Trust-region dogleg algorithm (default)
- 'lm' - Levenberg-Marquardt
- 'gn' - Gauss-Newton

LineSearchType Line search algorithm choice. This option applies to the 'lm' (Levenberg-Marquardt) and 'gn' (Gauss-Netwton) algorithms.

Examples Example 1

This example finds a zero of the system of two equations and two unknowns:

$$
\begin{aligned}
2 x_{1}-x_{2} & =e^{-x_{1}} \\
-x_{1}+2 x_{2} & =e^{-x_{2}}
\end{aligned}
$$

You want to solve the following system for x

$$
\begin{aligned}
2 x_{1}-x_{2}-e^{-x_{1}} & =0 \\
-x_{1}+2 x_{2}-e^{-x_{2}} & =0
\end{aligned}
$$

starting at $\mathrm{x} 0=\left[\begin{array}{ll}-5 & -5\end{array}\right]$.
First, write an M-file that computes F, the values of the equations at x.

```
function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1));
    -x(1) + 2*x(2) - exp(-x(2))];
```

Next, call an optimization routine.

```
x0 = [-5; -5]; % Make a starting guess at the solution
options=optimset('Display','iter'); % Option to display output
[x,fval] = fsolve(@myfun,x0,options) % Call optimizer
```

After 33 function evaluations, a zero is found.

Example 2

Find a matrix x that satisfies the equation

$$
X * X * X=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

starting at the point $\mathrm{x}=[1,1 ; 1,1]$.
First, write an M-file that computes the equations to be solved.

```
function F = myfun(x)
F = x*x*x-[1,2;3,4];
```

Next, invoke an optimization routine.

```
x0 = ones(2,2); % Make a starting guess at the solution
options = optimset('Display','off'); % Turn off Display
[x,Fval,exitflag] = fsolve(@myfun,x0,options)
```

The solution is

$$
x=
$$

$$
-0.1291 \quad 0.8602
$$

$$
\begin{array}{ll}
1.2903 & 1.1612
\end{array}
$$

```
Fval =
    1.0e-009 *
        -0.1619 0.0776
        0.1161 -0.0469
exitflag =
    1
```

and the residual is close to zero.

```
sum(sum(Fval.*Fval))
```

```
ans =
4.7915e-020
```

Notes
If the system of equations is linear, use \backslash (matrix left division) for better speed and accuracy. For example, to find the solution to the following linear system of equations:

$$
\begin{aligned}
3 x_{1}+11 x_{2}-2 x_{3} & =7 \\
x_{1}+x_{2}-2 x_{3} & =4 \\
x_{1}-x_{2}+x_{3} & =19
\end{aligned}
$$

You can formulate and solve the problem as

```
\(\mathrm{A}=\left[\begin{array}{lllllll} & 11 & -2 ; 1 & 1 & -2 ; 1 & -1 & 1] ;\end{array}\right.\)
b = [ 7; 4; 19];
\(x=A \backslash b\)
\(\mathrm{x}=\)
    13.2188
    -2.3438
    3.4375
```

The Gauss-Newton, Levenberg-Marquardt, and large-scale methods are based on the nonlinear least-squares algorithms also used in lsqnonlin. Use one of these methods if the system may not have a zero. The algorithm still returns a point where the residual is small. However, if the Jacobian of the system is singular, the algorithm might converge to a point that is not a solution of the system of equations (see "Limitations" on page 8-114 and "Diagnostics" on page 8-113 following).

Large-Scale Optimization

fsolve, with the LargeScale option set to 'on' with optimset, uses the large-scale algorithm if possible. This algorithm is a subspace trust region method and is based on the interior-reflective Newton method described in [1] and [2]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear

Minimization" on page 4-3 and "Preconditioned Conjugate Gradients" on page 4-7.

Medium-Scale Optimization

By default fsolve chooses the medium-scale algorithm and uses the trust-region dogleg method. The algorithm is a variant of the Powell dogleg method described in [8]. It is similar in nature to the algorithm implemented in [7].

Alternatively, you can select a Gauss-Newton method [3] with line-search, or a Levenberg-Marquardt method [4], [5], and [6] with line-search. The choice of algorithm is made by setting the NonlEqnAlgorithm option to 'dogleg' (default), 'lm', or 'gn'.

The default line search algorithm for the Levenberg-Marquardt and Gauss-Newton methods, i.e., the LineSearchType option set to 'quadcubic', is a safeguarded mixed quadratic and cubic polynomial interpolation and extrapolation method. A safeguarded cubic polynomial method can be selected by setting LineSearchType to 'cubicpoly'. This method generally requires fewer function evaluations but more gradient evaluations. Thus, if gradients are being supplied and can be calculated inexpensively, the cubic polynomial line search method is preferable. The algorithms used are described fully in Chapter 3, "Standard Algorithms".

Diagnostics

Medium and Large-Scale Optimization

fsolve may converge to a nonzero point and give this message:

```
Optimizer is stuck at a minimum that is not a root
Try again with a new starting guess
```

In this case, run fsolve again with other starting values.

Medium-Scale Optimization

For the trust region dogleg method, fsolve stops if the step size becomes too small and it can make no more progress. fsolve gives this message:
The optimization algorithm can make no further progress:

```
Trust region radius less than 10*eps
```

In this case, run fsolve again with other starting values.

Limitations

References

The function to be solved must be continuous. When successful, fsolve only gives one root. fsolve may converge to a nonzero point, in which case, try other starting values.
fsolve only handles real variables. When x has complex variables, the variables must be split into real and imaginary parts.

Large-Scale Optimization

The preconditioner computation used in the preconditioned conjugate gradient part of the large-scale method forms $J T J$ (where J is the Jacobian matrix) before computing the preconditioner; therefore, a row of J with many nonzeros, which results in a nearly dense product $J \mathrm{~T} J$, might lead to a costly solution process for large problems.

Medium-Scale Optimization

The default trust region dogleg method can only be used when the system of equations is square, i.e., the number of equations equals the number of unknowns. For the Levenberg-Marquardt and Gauss-Newton methods, the system of equations need not be square.
[1] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.
[2] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
[3] Dennis, J. E. Jr., "Nonlinear Least-Squares," State of the Art in Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312.
[4] Levenberg, K., "A Method for the Solution of Certain Problems in Least-Squares," Quarterly Applied Mathematics 2, pp. 164-168, 1944.
[5] Marquardt, D., "An Algorithm for Least-squares Estimation of Nonlinear Parameters," SIAM Journal Applied Mathematics, Vol. 11, pp. 431-441, 1963.
[6] Moré, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK 1, Argonne National Laboratory, Rept. ANL-80-74, 1980.
[8] Powell, M. J. D., "A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations," Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed., Ch.7, 1970.

See Also @(function_handle),
(matrix left division), lsqcurvefit, lsqnonlin, optimset, anonymous functions

Purpose Find root of continuous function of one variable

```
Syntax \(\quad x=\) fzero (fun, \(x 0\) )
\(x\) = fzero(fun, \(x 0\),options)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)
```


Description

$x=$ fzero(fun, $x 0$) tries to find a zero of fun near $x 0$, if $x 0$ is a scalar. fun is a function handle for either an M-file function or an anonymous function. The value x returned by fzero is near a point where fun changes sign, or NaN if the search fails. In this case, the search terminates when the search interval is expanded until an Inf, NaN, or complex value is found.

If $x 0$ is a vector of length two, fzero assumes $x 0$ is an interval where the sign of fun ($\mathrm{xO}(1)$) differs from the sign of fun($\mathrm{xO}(2)$). An error occurs if this is not true. Calling fzero with such an interval guarantees that fzero returns a value near a point where fun changes sign.

Note Calling fzero with an interval (x0 with two elements) is often faster than calling it with a scalar $x 0$.
$x=$ fzero(fun, $x 0$, options) solves the equation with the optimization options specified in the structure options. Use optimset to set these options.
[x,fval] = fzero(...) returns the value of the objective function fun at the solution x.
[x,fval,exitflag] = fzero(...) returns a value exitflag that describes the exit condition.
[x,fval,exitflag,output] = fzero(...) returns a structure output that contains information about the optimization.

Note For the purposes of this command, zeros are considered to be points where the function actually crosses-not just touches-the x-axis.
"Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 explains how to parameterize the objective function fun, if necessary.

Input Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into fzero. This section provides function-specific details for fun and options:
fun The function whose zero is to be computed. fun is a function handle for a function that accepts a scalar x and returns a scalar, the objective function evaluated at x. The function fun can be specified as a function handle for an M-file function

$$
x=\text { fzero(@myfun, x0) }
$$

where myfun is a MATLAB function such as

```
function f = myfun(x)
f = ... % Compute function value at x
```

fun can also be a function handle for an anonymous function.

$$
\left.\left.x=\text { fzero(@(x)sin(} x^{*} x\right), x 0\right) \text {; }
$$

options Optimization options. You can set or change the values of these options using the optimset function. fzero uses these options structure fields:

| Display | Level of display. 'off' displays no output;
 'iter' displays output at each iteration;
 'final' displays just the final output;
 'notify' (default) displays output only if
 the function does not converge. |
| :--- | :--- |
| FunValCheck | Check whether objective function values
 are valid. 'on' displays an error when
 the objective function returns a value that
 is complex or NaN. 'off' (the default)
 displays no error. |
| OutputFcn | Specify one or more user-defined functions
 that an optimization function calls at
 each iteration. See "Output Function" on
 page 6-16. |
| TolX | Termination tolerance on x. |

Output "Function Arguments" on page 6-2 contains general descriptions of Arguments arguments returned by fzero. This section provides function-specific details for exitflag and output:

exitflag \begin{tabular}{l}
Integer identifying the reason the algorithm

terminated. The following lists the values of exitflag

and the corresponding reasons the algorithm

terminated.

1

Function converged to a

solution x.
\end{tabular}

-1

| Algorithm was terminated by |
| :--- |
| the output function. |

| NaN or Inf function value was |
| :--- |
| encountered during search for |
| an interval containing a sign |
| change. |

| -4 | Complex function value was
 encountered during search for
 an interval containing a sign
 change. | |
| :--- | :--- | :--- |
| output | -5 | Algorithm might have
 converged to a singular
 point. |
| Structure containing information about the | | |
| optimization. The fields of the structure are | | |
| algorithm | | |
| funcCount | Algorithm used | |
| intervaliterations | Number of function
 evaluations | |
| iterations | Number of iterations taken to
 find anterval
 Number of zero-finding
 iterations | |
| message | Exit message | |

Examples Calculate π by finding the zero of the sine function near 3.

$$
\begin{aligned}
& x=\text { fzero(@sin,3) } \\
& x=3.1416
\end{aligned}
$$

To find the zero of cosine between 1 and 2, enter

```
x = fzero(@cos,[1 2])
x =
    1.5708
```

Note that $\cos (1)$ and $\cos (2)$ differ in sign.
To find a zero of the function

$$
f(x)=x^{3}-2 x-5
$$

write an M-file called f.m.

```
function y = f(x)
y = x.^3-2*x-5;
```

To find the zero near 2, enter

```
z = fzero(@f,2)
z =
    2.0946
```

Since this function is a polynomial, the statement roots ([$\left.\left.\begin{array}{llll}1 & 0 & -2 & -5\end{array}\right]\right)$ finds the same real zero, and a complex conjugate pair of zeros.

$$
\begin{aligned}
& 2.0946 \\
& -1.0473+1.1359 i \\
& -1.0473-1.1359 i
\end{aligned}
$$

If fun is parameterized, you can use anonymous functions to capture the problem-dependent parameters. For example, suppose you want to find a zero of the function myfun defined by the following M-file function.

```
function f = myfun(x,a)
f = cos(a*x);
```

Note that myfun has an extra parameter a, so you cannot pass it directly to fzero. To optimize for a specific value of a, such as $a=2$.

1 Assign the value to a.

$$
a=2 ; \% \text { define parameter first }
$$

2 Call fzero with a one-argument anonymous function that captures that value of a and calls myfun with two arguments:

$$
x=\text { fzero(@(x) myfun(x,a), 0.1) }
$$

Algorithm

Limitations

References
[1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall, 1973.
[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, 1976.

See Also
@ (function_handle),
(matrix left division), fminbnd, fsolve, optimset, roots, anonymous functions

The fzero command is an M-file. The algorithm, which was originated by T. Dekker, uses a combination of bisection, secant, and inverse quadratic interpolation methods. An Algol 60 version, with some improvements, is given in [1]. A Fortran version, upon which the fzero M-file is based, is in [2].

The fzero command finds a point where the function changes sign. If the function is continuous, this is also a point where the function has a value near zero. If the function is not continuous, fzero may return values that are discontinuous points instead of zeros. For example, fzero(@tan, 1) returns 1.5708, a discontinuous point in tan.

Furthermore, the fzero command defines a zero as a point where the function crosses the x-axis. Points where the function touches, but does not cross, the x-axis are not valid zeros. For example, $\mathrm{y}=\mathrm{x} .{ }^{\wedge} 2$ is a parabola that touches the x-axis at 0 . Since the function never crosses the x-axis, however, no zero is found. For functions with no valid zeros, fzero executes until Inf, NaN, or a complex value is detected.

fzmult

Purpose Multiplication with fundamental nullspace basis

Syntax
\section*{Description}

```
W = fzmult(A,V)
W = fzmult(A,V,'transpose')
[W,L,U,pcol,P] = fzmult(A,V)
W = fzmult(A,V,transpose,L,U,pcol,P)
```

$W=$ fzmult (A, V) computes the product W of matrix Z with matrix V, that is, $W=Z * V$, where Z is a fundamental basis for the nullspace of matrix A. A must be a sparse m-by-n matrix where $m<n$, $\operatorname{rank}(A)=m$, and $\operatorname{rank}(A(1: m, 1: m))=m$. V must be $p-b y-q$, where $p=n-m$. If V is sparse W is sparse, else W is full.
$\mathrm{W}=\mathrm{fzmult}(\mathrm{A}, \mathrm{V}$, 'transpose') computes the product of the transpose of the fundamental basis times V, that is, $W=Z^{\prime} * V$. V must be $p-b y-q$, where $q=n-m$. fzmult (A, V) is the same as fzmult $(A, V,[])$.
[W,L,U,pcol,P] = fzmult(A,V) returns the sparse LU-factorization of matrix $A(1: m, 1: m)$, that is, $A 1=A(1: m, 1: m)$ and P*A1(:,pcol) = L*U.

W = fzmult(A,V,transpose,L,U,pcol,P) uses the precomputed sparse LU factorization of matrix $A(1: m, 1: m)$, that is, $A 1=A(1: m, 1: m)$ and $\mathrm{P} * \mathrm{~A} 1(:, \mathrm{pcol})=\mathrm{L} * \mathrm{U}$. transpose is either 'transpose' or [].

The nullspace basis matrix Z is not formed explicitly. An implicit representation is used based on the sparse LU factorization of A(1:m,1:m).
Purpose Zero out "small" entries subject to structural rank
Syntax $A=$ gangstr (M,tol)
Description $A=$ gangstr $(M, t o l)$ creates matrix A of full structural rank suchthat A is M except that elements of M that are relatively "small," basedon tol, are zeros in A. The algorithm decreases tol, if needed, until$\operatorname{sprank}(A)=\operatorname{sprank}(M) . M$ must have at least as many columns asrows. Default tol is $1 \mathrm{e}-2$.
gangstr identifies elements of M that are relatively less than tol by first normalizing all the rows of M to have norm 1. It then examines nonzeros in M in a columnwise fashion, replacing with zeros those elements with values of magnitude less than tol times the maximum absolute value in that column.
See Also sprank, spy

Purpose
Equation
Solve linear programming problems
Finds the minimum of a problem specified by

$$
\begin{aligned}
& \min _{x} f^{T} x \quad \text { such that } \quad A \cdot x \leq b \\
& \text { Aeq } \cdot x=b e q \\
& l b \leq x \leq u b
\end{aligned}
$$

where $f, x, b, b e q, l b$, and $u b$ are vectors and A and $A e q$ are matrices.
Syntax

```
x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq, beq,lb,ub,x0)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval] = linprog(...)
[x,lambda,exitflag] = linprog(...)
[x,lambda,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)
```


Description

linprog solves linear programming problems.
$x=\operatorname{linprog}(f, A, b)$ solves min $f^{\prime *} x$ such that $A^{*} x<=b$.
$x=\operatorname{linprog}(f, A, b, A e q, b e q)$ solves the problem above while additionally satisfying the equality constraints Aeq*x = beq. Set $A=[]$ and $b=[]$ if no inequalities exist.
$x=\operatorname{linprog}(f, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables, x, so that the solution is always in the range $\mathrm{lb}<=\mathrm{x}<=\mathrm{ub}$. Set Aeq=[] and beq=[] if no equalities exist.
$x=\operatorname{linprog}(f, A, b, A e q, b e q, l b, u b, x 0)$ sets the starting point to $x 0$. This option is only available with the medium-scale algorithm (the LargeScale option is set to 'off' using optimset). The default large-scale algorithm and the simplex algorithm ignore any starting point.
$x=\operatorname{linprog}(f, A, b, A e q, b e q, l b, u b, x 0, o p t i o n s)$ minimizes with the optimization options specified in the structure options. Use optimset to set these options.
$[x, f v a l]=\operatorname{linprog}(\ldots)$ returns the value of the objective function fun at the solution x : fval $=f^{\prime *} x$.
[x,lambda,exitflag] = linprog(...) returns a value exitflag that describes the exit condition.
[x,lambda,exitflag,output] = linprog(...) returns a structure output that contains information about the optimization.
[x,fval,exitflag,output,lambda] = linprog(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x .

Input Arguments

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into linprog. "Options" on page 8-126 provides the function-specific details for the options values.
"Function Arguments" on page 6-2 contains general descriptions of arguments returned by linprog. This section provides function-specific details for exitflag, lambda, and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated.

| 1 | Function converged to a solution x. |
| :--- | :--- |
| 0 | Number of iterations exceeded
 options.MaxIter. |
| -2 | No feasible point was found. |
| -3 | Problem is unbounded. |
| -4 | NaN value was encountered during
 execution of the algorithm. |

linprog

Both primal and dual problems are infeasible.

Search direction became too small. No further progress could be made.
lambda Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields of the structure are:

| lower | Lower bounds lb |
| :--- | :--- |
| upper | Upper bounds ub |
| ineqlin | Linear inequalities |
| eqlin | Linear equalities |

output Structure containing information about the optimization. The fields of the structure are:

| algorithm | Algorithm used |
| :--- | :--- |
| cgiterations | The number of conjugate gradient
 iterations (large-scale algorithm
 only). |
| iterations | Number of iterations |
| message | Exit message |

Optimization options used by linprog. Some options apply to all algorithms, and others are only relevant when using the large-scale algorithm. You can use optimset to set or change the values of these fields in the options structure, options. See "Optimization Options" on page 6-8 for detailed information.

$$
\begin{array}{ll}
\text { LargeScale } & \begin{array}{l}
\text { Use large-scale algorithm when set to 'on'. Use } \\
\\
\\
\text { medium-scale algorithm when set to 'off'. }
\end{array}
\end{array}
$$

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

| Diagnostics | Print diagnostic information about the function to
 be minimized. |
| :--- | :--- |
| Display | Level of display. 'off' displays no output; ' iter'
 displays output at each iteration; 'final' (default)
 displays just the final output. At this time, the
 'iter' level only works with the large-scale and
 simplex algorithms. |
| MaxIter | Maximum number of iterations allowed. |
| Medium-Scale Algorithm Only | |

These options are used by the medium-scale algorithm:
Simplex If 'on', linprog uses the simplex algorithm. The simplex algorithm uses a built-in starting point, ignoring the starting point $x 0$ if supplied. The default is 'off'. See "Simplex Algorithm" on page 3-39 for more information and an example.

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:
TolFun Termination tolerance on the function value.

Examples Find x that minimizes

$$
f(x)=-5 x_{1}-4 x_{2}-6 x_{3}
$$

subject to

linprog

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3} \leq 20 \\
& 3 x_{1}+2 x_{2}+4 x_{3} \leq 42 \\
& 3 x_{1}+2 x_{2} \leq 30 \\
& 0 \leq x_{1}, 0 \leq x_{2}, 0 \leq x_{3}
\end{aligned}
$$

First, enter the coefficients

```
f = [-5; -4; -6]
A = [\begin{array}{lll}{1 -1 1}\end{array}]
    3 2 4
    3 2 0];
b = [20; 42; 30];
lb = zeros(3,1);
```

Next, call a linear programming routine.

```
[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);
```

Entering x , lambda.ineqlin, and lambda.lower gets

```
x =
    0.0000
    15.0000
    3.0000
lambda.ineqlin =
    0
    1.5000
    0.5000
lambda.lower =
    1.0000
    0
    0
```

Nonzero elements of the vectors in the fields of lambda indicate active constraints at the solution. In this case, the second and third inequality constraints (in lambda.ineqlin) and the first lower bound constraint
(in lambda. lower) are active constraints (i.e., the solution is on their constraint boundaries).

Algorithm

Large-Scale Optimization

The large-scale method is based on LIPSOL (Linear Interior Point Solver, [3]), which is a variant of Mehrotra's predictor-corrector algorithm ([2]), a primal-dual interior-point method. A number of preprocessing steps occur before the algorithm begins to iterate. See "Large-Scale Linear Programming" on page 4-15.

Medium-Scale Optimization

linprog uses a projection method as used in the quadprog algorithm. linprog is an active set method and is thus a variation of the well-known simplex method for linear programming [1]. The algorithm finds an initial feasible solution by first solving another linear programming problem.

Alternatively, you can use the simplex algorithm, described in "Simplex Algorithm" on page 3-39, by entering

```
options = optimset('LargeScale', 'off', 'Simplex', 'on')
```

and passing options as an input argument to linprog. The simplex algorithm returns a vertex optimal solution.

Note You cannot supply an initial point x0 for linprog with either the large-scale method or the medium-scale method using the simplex algorithm. In either case, if you pass in $x 0$ as an input argument, linprog ignores $\times 0$ and computes its own initial point for the algorithm.

Diagnostics Large-Scale Optimization

The first stage of the algorithm might involve some preprocessing of the constraints (see "Large-Scale Linear Programming" on page 4-15). Several possible conditions might occur that cause linprog to exit with

linprog

an infeasibility message. In each case, the exitflag argument returned by linprog is set to a negative value to indicate failure.
If a row of all zeros is detected in Aeq but the corresponding element of beq is not zero, the exit message is

```
Exiting due to infeasibility: An all zero row in the constraint
matrix does not have a zero in corresponding right-hand size
entry.
```

If one of the elements of x is found not to be bounded below, the exit message is

```
Exiting due to infeasibility: Objective f'*x is unbounded below.
```

If one of the rows of Aeq has only one nonzero element, the associated value in x is called a singleton variable. In this case, the value of that component of x can be computed from Aeq and beq. If the value computed violates another constraint, the exit message is

```
Exiting due to infeasibility: Singleton variables in equality
constraints are not feasible.
```

If the singleton variable can be solved for but the solution violates the upper or lower bounds, the exit message is

Exiting due to infeasibility: Singleton variables in the equality constraints are not within bounds.

Note The preprocessing steps are cumulative. For example, even if your constraint matrix does not have a row of all zeros to begin with, other preprocessing steps may cause such a row to occur.

Once the preprocessing has finished, the iterative part of the algorithm begins until the stopping criteria are met. (See "Large-Scale Linear Programming" on page 4-15 for more information about residuals, the
primal problem, the dual problem, and the related stopping criteria.) If the residuals are growing instead of getting smaller, or the residuals are neither growing nor shrinking, one of the two following termination messages is displayed, respectively,

```
One or more of the residuals, duality gap, or total relative error
has grown 100000 times greater than its minimum value so far:
```

or
One or more of the residuals, duality gap, or total relative error has stalled:

After one of these messages is displayed, it is followed by one of the following six messages indicating that the dual, the primal, or both appear to be infeasible. The messages differ according to how the infeasibility or unboundedness was measured.

```
The dual appears to be infeasible (and the primal unbounded).(The
primal residual < TolFun.)
The primal appears to be infeasible (and the dual unbounded). (The
dual residual < TolFun.)
The dual appears to be infeasible (and the primal unbounded) since
the dual residual > sqrt(TolFun).(The primal residual <
10*TolFun.)
The primal appears to be infeasible (and the dual unbounded) since
the primal residual > sqrt(TolFun).(The dual residual <
10*TolFun.)
The dual appears to be infeasible and the primal unbounded since
the primal objective < -1e+10 and the dual objective < 1e+6.
The primal appears to be infeasible and the dual unbounded since
the dual objective > 1e+10 and the primal objective > -1e+6.
Both the primal and the dual appear to be infeasible.
```

Note that, for example, the primal (objective) can be unbounded and the primal residual, which is a measure of primal constraint satisfaction, can be small.

linprog

Medium-Scale Optimization

linprog gives a warning when the problem is infeasible.

```
Warning: The constraints are overly stringent;
there is no feasible solution.
```

In this case, linprog produces a result that minimizes the worst case constraint violation.

When the equality constraints are inconsistent, linprog gives

```
Warning: The equality constraints are overly
stringent; there is no feasible solution.
```

Unbounded solutions result in the warning

```
Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough.
```

In this case, linprog returns a value of x that satisfies the constraints.

Limitations

References

Medium-Scale Optimization

At this time, the only levels of display, using the Display option in options, are 'off' and 'final'; iterative output using 'iter' is not available.
[1] Dantzig, G.B., A. Orden, and P. Wolfe, "Generalized Simplex Method for Minimizing a Linear from Under Linear Inequality Constraints," Pacific Journal Math., Vol. 5, pp. 183-195.
[2] Mehrotra, S., "On the Implementation of a Primal-Dual Interior Point Method," SIAM Journal on Optimization, Vol. 2, pp. 575-601, 1992.
[3] Zhang, Y., "Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment," Technical Report TR96-01,

Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD, July 1995.

See Also
 quadprog

Purpose

Equation

Syntax

Description

Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense

Find coefficients x that best fit the equation

$$
\min _{x} \frac{1}{2} \| F(x, x \text { data })-y \text { data } \|_{2}^{2}=\frac{1}{2} \sum_{i=1}^{m}\left(F\left(x, x d a t a_{i}\right)-y d a t a_{i}\right)^{2}
$$

given input data $x d a t a$, and the observed output $y d a t a$, where $x d a t a$ and $y d a t a$ are vectors of length m and $F(x, x d a t a)$ is a vector-valued function.

The function lsqcurvefit uses the same algorithm as lsqnonlin. Its purpose is to provide an interface designed specifically for data-fitting problems.

```
Syntax
x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun, x0,xdata,ydata,lb,ub,options)
[x,resnorm] = lsqcurvefit(...)
[x,resnorm,residual] = lsqcurvefit(...)
[x,resnorm,residual,exitflag] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,
    lambda] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda,
    jacobian] = lsqcurvefit(...)
```

lsqcurvefit solves nonlinear data-fitting problems. lsqcurvefit requires a user-defined function to compute the vector-valued function $F(x, x d a t a)$. The size of the vector returned by the user-defined function must be the same as the size of the vectors ydata and xdata.
$x=1$ sqcurvefit(fun, $x 0, x d a t a, y d a t a)$ starts at $x 0$ and finds coefficients x to best fit the nonlinear function fun ($x, x d a t a$) to the data ydata (in the least-squares sense). ydata must be the same size as the vector (or matrix) F returned by fun.
$x=1 s q c u r v e f i t(f u n, x 0, x d a t a, y d a t a, l b, u b)$ defines a set of lower and upper bounds on the design variables in x so that the solution is always in the range $l \mathrm{~b}$ <= $\mathrm{x}<=\mathrm{ub}$.
$x=1$ sqcurvefit(fun, $x 0, x d a t a, y d a t a, l b, u b, o p t i o n s)$ minimizes with the optimization options specified in the structure options. Use optimset to set these options. Pass empty matrices for $1 b$ and ub if no bounds exist.
[x,resnorm] = lsqcurvefit(...) returns the value of the squared 2 -norm of the residual at x : sum((fun($x, x d a t a)$-ydata). ${ }^{\wedge} 2$).
[x, resnorm, residual] = lsqcurvefit(...) returns the value of the residual fun($x, x d a t a$) - ydata at the solution x.
[x,resnorm, residual,exitflag] = lsqcurvefit(...) returns a value exitflag that describes the exit condition.
[x,resnorm,residual,exitflag,output] = lsqcurvefit(...) returns a structure output that contains information about the optimization.
[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit (...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x .
[x,resnorm, residual,exitflag,output,lambda, jacobian] = lsqcurvefit(...) returns the Jacobian of fun at the solution x.

Input Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into lsqcurvefit. This section provides function-specific details for fun and options:
fun The function you want to fit. fun is a function that takes a vector x and returns a vector F, the objective functions evaluated at x. The function fun can be specified as a function handle for an M-file function

```
x = lsqcurvefit(@myfun,x0,xdata,ydata)
```

where myfun is a MATLAB function such as

```
function F = myfun(x,xdata)
F = .. % Compute function values at x
```

fun can also be a function handle for an anonymous function.

```
f = @(x,xdata)x(1)*xdata.^2+x(2)*sin(xdata),...
    'x','xdata';
x = lsqcurvefit(f,x0,xdata,ydata);
```

Note fun should return fun(x, xdata), and not the sum-of-squares sum((fun(x, xdata)-ydata). ${ }^{\wedge} 2$). The algorithm implicitly squares and sums fun($x, x d a t a)$-ydata.

If the Jacobian can also be computed and the Jacobian option is 'on', set by

```
options = optimset('Jacobian','on')
```

then the function fun must return, in a second output argument, the Jacobian value J, a matrix, at x. Note that by checking the value of nargout the function can avoid computing J when fun is called with only one output argument (in the case where the optimization algorithm only needs the value of F but not J).

```
function [F,J] = myfun(x,xdata)
F = ... %objective function values at }
if nargout > 1 % two output arguments
    J = ... % Jacobian of the function evaluated at x
end
```

If fun returns a vector (matrix) of m components and x has length n, where n is the length of $x 0$, then the Jacobian J is an m-by-n matrix where $J(i, j)$ is the partial derivative of $F(i)$ with respect to $x(j)$. (Note that the Jacobian J is the transpose of the gradient of F .)
options "Options" on page 8-139 provides the function-specific details for the options values.

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments returned by lsqcurvefit. This section provides function-specific details for exitflag, lambda, and output:
exitflag \(\left.\begin{array}{l}Integer identifying the reason the algorithm

terminated. The following lists the values of

exitflag and the corresponding reasons the

algorithm terminated:\end{array}\right\}\)| Function converged to a |
| :--- |
| solution x. |
| Change in x was less than the |
| specified tolerance. |
| 2 |

| | 0 | Number of iterations exceeded options. MaxIter or number of function evaluations exceeded options.FunEvals. |
| :---: | :---: | :---: |
| | -1 | Algorithm was terminated by the output function. |
| | -2 | Problem is infeasible: the bounds lb and ub are inconsistent. |
| | -4 | Optimization could not make further progress. |
| lambda | Structure cont solution \times (sep of the structur | the Lagrange multipliers at the by constraint type). The fields |
| | lower | Lower bounds lb |
| | upper | Upper bounds ub |
| output | Structure cont optimization. | information about the lds of the structure are |
| | iterations | Number of iterations taken |
| | funcCount | Number of function evaluations |
| | algorithm | Algorithm used |
| | cgiterations | The number of PCG iterations (large-scale algorithm only) |

| stepsize | The final step size taken
 (medium-scale algorithm only). |
| :--- | :--- |
| firstorderopt | Measure of first-order
 optimality (large-scale
 algorithm only). |
| | For large-scale bound |
| constrained problems, the | |
| first-order optimality is | |
| the infinity norm of v. *g, | |
| | where v is defined as in "Box |
| | Constraints" on page 4-10, and |
| | gis the gradient $g=J^{\mathrm{T}} F$ (see |
| "Nonlinear Least-Squares" on | |
| page $4-12$). | |

Note The sum of squares should not be formed explicitly. Instead, your function should return a vector of function values. See the examples below.

Options

Optimization options used by lsqcurvefit. Some options apply to all algorithms, some are only relevant when using the large-scale algorithm, and others are only relevant when you are using the medium-scale algorithm. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 6-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference, because certain conditions must be met to use the large-scale or medium-scale algorithm. For the large-scale algorithm, the nonlinear system of equations cannot be underdetermined; that is, the number of equations (the number of elements of F returned by fun) must be at least as many as the length of x. Furthermore, only the large-scale algorithm handles bound constraints:

| LargeScale | Use large-scale algorithm if possible when set
 to 'on'. Use medium-scale algorithm when set |
| :--- | :--- |
| to 'off'. | |

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

| DerivativeCheck | Compare user-supplied derivatives (Jacobian) to
 finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about the function
 to be minimized. |
| DiffMaxChange | Maximum change in variables for finite
 differencing. |
| DiffMinChange | Minimum change in variables for finite
 differencing. |
| Display | Level of display. ' off' displays no output, and
 'final' (default) displays just the final output. |
| Jacobian | If 'on', lsqcurvefit uses a user-defined Jacobian
 (defined in fun), or Jacobian information (when
 using JacobMult), for the objective function. If
 'off', lsqcurvefit approximates the Jacobian
 using finite differences. |
| MaxFunEvals | Maximum number of function evaluations
 allowed. |
| MaxIter | Maximum number of iterations allowed. |
| OutputFcn | Specify one or more user-defined functions that an
 optimization function calls at each iteration. See |
| "Output Function" on page 6-16. | |

| PlotFcns | Plots various measures of progress while the
 algorithm executes, select from predefined plots
 or write your own. Specifying @optimplotx plots
 the current point; @optimplotfunccount plots the
 function count; @optimplotfval plots the function
 value. |
| :--- | :--- |
| TolFun | Termination tolerance on the function value. |
| TolX | Termination tolerance on x. |
| TypicalX | Typical x values. |

These options are used only by the large-scale algorithm:
JacobMult Function handle for Jacobian multiply function. For large-scale structured problems, this function computes the Jacobian matrix product J*Y, J'*Y, or $J^{\prime *}(J * Y)$ without actually forming J. The function is of the form
W = jmfun(Jinfo, Y,flag, p1, p2, ...)
where Jinfo and the additional parameters p1, p2, ... contain the matrices used to compute $J * Y$ (or J'*Y, or J'* $(J * Y)$). The first argument Jinfo must be the same as the second argument returned by the objective function fun, for example by

$$
[F, J i n f o]=\text { fun }(x)
$$

Y is a matrix that has the same number of rows as there are dimensions in the problem. flag determines which product to compute:

- If flag == 0 then $W=J^{\prime *}(J * Y)$.
- If flag > 0 then $W=J * Y$.
- If flag < 0 then $W=J$ '*Y.

In each case, J is not formed explicitly. fsolve uses Jinfo to compute the preconditioner. The optional parameters p1, p2, ... can be any additional parameters needed by jmfun. See "Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 for information on how to supply values for these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo to be passed from fun to jmfun.

See "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 2-60 for a similar example.

JacobPattern Sparsity pattern of the Jacobian for finite differencing. If it is not convenient to compute the Jacobian matrix J in fun, lsqcurvefit can approximate J via sparse finite differences, provided the structure of J, i.e., locations of the nonzeros, is supplied as the value for JacobPattern. In the worst case, if the structure is unknown, you can set JacobPattern to be a dense matrix and a full finite-difference approximation is computed in each iteration (this is the default if JacobPattern is not set). This can be very expensive for large problems, so it is usually worth the effort to determine the sparsity structure.

| MaxPCGIter | Maximum number of PCG (preconditioned
 conjugate gradient) iterations (see "Algorithm"
 on page 8-144). |
| :--- | :--- |
| PrecondBandWidth | Upper bandwidth of preconditioner for PCG.
 By default, diagonal preconditioning is used
 (upper bandwidth of 0). For some problems,
 increasing the bandwidth reduces the number
 of PCG iterations. Setting PrecondBandWidth
 to ' Inf ' uses a direct factorization (Cholesky)
 rather than the conjugate gradients (CG). The
 direct factorization is computationally more
 expensive than CG, but produces a better quality |
| step towards the solution. | |

Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:

> LevenbergMarquardt Choose Levenberg-Marquardt over Gauss-Newton algorithm.

LineSearchType Line search algorithm choice.

Examples Given vectors of data $x d a t a$ and $y d a t a$, suppose you want to find

 coefficients x to find the best fit to the exponential decay equation$$
y d a t a(i)=x(1) * \mathrm{e}^{\left(x(2)^{*} x d a t a(i)\right)}
$$

That is, you want to minimize

$$
\min _{x} \frac{1}{2} \sum_{i=1}^{m}\left(F\left(x, x d a t a_{i}\right)-y d a t a_{i}\right)^{2}
$$

where m is the length of xdata and ydata, the function F is defined by

$$
F(x, x d a t a)=x(1) * \exp (x(2) * x d a t a)
$$

and the starting point is $\mathrm{x} 0=[100 ;-1]$;
First, write an M-file to return the value of F (F has n components).

```
function F = myfun(x,xdata)
F = x(1)*exp(x(2)*xdata);
```

Next, invoke an optimization routine:

```
% Assume you determined xdata and ydata experimentally
xdata = [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];
ydata = [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];
x0 = [100; -1] % Starting guess
[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata)
```

Note that at the time that lsqcurvefit is called, xdata and ydata are assumed to exist and are vectors of the same size. They must be the same size because the value F returned by fun must be the same size as ydata.
After 27 function evaluations, this example gives the solution

```
x =
498.8309-0.1013
resnorm =
9.5049
```

There may be slight variation in the number of iterations and the value of the returned x that is dependent upon the platform and release.

Algorithm

Large-Scale Optimization

By default lsqcurvefit chooses the large-scale algorithm. This algorithm is a subspace trust region method and is based on the interior-reflective Newton method described in [1] and[2]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See
"Trust-Region Methods for Nonlinear Minimization" on page 4-3 and "Preconditioned Conjugate Gradients" on page 4-7.

Medium-Scale Optimization

lsqcurvefit, with the LargeScale option set to 'off' with optimset, uses the Levenberg-Marquardt method with line-search [4], [5], and [6]. Alternatively, a Gauss-Newton method [3] with line-search may be selected. You can choose the algorithm by setting the LevenbergMarquardt option with optimset. Setting LevenbergMarquardt to 'off' (and LargeScale to 'off') selects the Gauss-Newton method, which is generally faster when the residual $\|F(x)\|_{2}^{2}$ is small.
The default line search algorithm, i.e., LineSearchType option set to 'quadcubic ', is a safeguarded mixed quadratic and cubic polynomial interpolation and extrapolation method. You can select a safeguarded cubic polynomial method by setting LineSearchType to 'cubicpoly'. This method generally requires fewer function evaluations but more gradient evaluations. Thus, if gradients are being supplied and can be calculated inexpensively, the cubic polynomial line search method is preferable. The algorithms used are described fully in Chapter 3, "Standard Algorithms".

Diagnostics Large-Scale Optimization

The large-scale method does not allow equal upper and lower bounds. For example, if $\mathrm{lb}(2)==u b(2)$, lsqlin gives the error

Equal upper and lower bounds not permitted.
(lsqcurvefit does not handle equality constraints, which is another way to formulate equal bounds. If equality constraints are present, use fmincon, fminimax, or fgoalattain for alternative formulations where equality constraints can be included.)

The function to be minimized must be continuous. lsqcurvefit might only give local solutions.
lsqcurvefit only handles real variables (the user-defined function must only return real values). When x has complex variables, the variables must be split into real and imaginary parts.

Large-Scale Optimization

The large-scale algorithm for lsqcurvefit does not solve underdetermined systems; it requires that the number of equations, i.e., the row dimension of F, be at least as great as the number of variables. In the underdetermined case, the medium-scale algorithm is used instead. See Large-Scale Problem Coverage and Requirements on page 2-42 for more information on what problem formulations are covered and what information must be provided.
The preconditioner computation used in the preconditioned conjugate gradient part of the large-scale method forms $J T J$ (where J is the Jacobian matrix) before computing the preconditioner; therefore, a row of J with many nonzeros, which results in a nearly dense product $J \mathrm{~T} J$, can lead to a costly solution process for large problems.

If components of x have no upper (or lower) bounds, then lsqcurvefit prefers that the corresponding components of ub (or lb) be set to inf (or - inf for lower bounds) as opposed to an arbitrary but very large positive (or negative for lower bounds) number.

Medium-Scale Optimization

The medium-scale algorithm does not handle bound constraints.
Since the large-scale algorithm does not handle under-determined systems and the medium-scale does not handle bound constraints, problems with both these characteristics cannot be solved by lsqcurvefit.

References

[1] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.
[2] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
[3] Dennis, J. E. Jr., "Nonlinear Least-Squares," State of the Art in Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.
[4] Levenberg, K., "A Method for the Solution of Certain Problems in Least-Squares," Quarterly Applied Math. 2, pp. 164-168, 1944.
[5] Marquardt, D., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," SIAM Journal Applied Math., Vol. 11, pp. 431-441, 1963.
[6] More, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
@ (function_handle),
(matrix left division), lsqlin, lsqnonlin, lsqnonneg, optimset, nlinfit

Note The nlinfit function in the Statistics Toolbox has more statistics-oriented outputs that are useful, for example, in finding confidence intervals for the coefficients. It also comes with the nlintool GUI for visualizing the fitted function. The lsqnonlin function has more outputs related to how well the optimization performed. It can put bounds on the parameters, and it accepts many options to control the optimization algorithm.

Purpose
Solve constrained linear least-squares problems

Equation

Solves least squares curve fitting problems of the form

$$
\begin{aligned}
& \min _{x} \frac{1}{2}\|C x-d\|_{2}^{2} \quad \text { such that } \quad A \cdot x \leq b \\
& \text { Aeq } \cdot x=b e q \\
& l b \leq x \leq u b
\end{aligned}
$$

where C, A, and Aeq are matrices and $d, b, b e q, l b, u b$, and x are vectors.
Syntax

```
\(x=1 s q l i n(C, d, A, b)\)
\(x=1 s q l i n(C, d, A, b, A e q, b e q)\)
\(x=1 s q l i n(C, d, A, b, A e q, b e q, l b, u b)\)
\(x=\operatorname{lsqlin}(C, d, A, b, A e q, b e q, l b, u b, x 0)\)
\(x=1 s q l i n(C, d, A, b, A e q, b e q, l b, u b, x 0\),options \()\)
[x,resnorm] = lsqlin(...)
[x,resnorm,residual] = lsqlin(...)
[x,resnorm,residual,exitflag] = lsqlin(...)
[x,resnorm,residual,exitflag,output] = lsqlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...)
```


Description

$x=\operatorname{lsqlin}(C, d, A, b)$ solves the linear system $C * x=d$ in the least-squares sense subject to $A * x<=b$, where C is m-by-n.
$x=1$ sqlin($C, d, A, b, A e q, b e q)$ solves the preceding problem while additionally satisfying the equality constraints Aeq*x = beq. Set $A=[]$ and $b=[]$ if no inequalities exist.
$x=1 s q l i n(C, d, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables in x so that the solution is always in the range $\mathrm{lb}<=\mathrm{x}<=\mathrm{ub}$. Set Aeq=[] and beq=[] if no equalities exist.
$x=1 \operatorname{sqlin}(C, d, A, b, A e q, b e q, l b, u b, x 0)$ sets the starting point to $x 0$. Set $1 b=[]$ and $b=[]$ if no bounds exist.

Input Arguments

Output Arguments

$x=1 s q l i n(C, d, A, b, A e q, b e q, l b, u b, x 0, o p t i o n s)$ minimizes with the optimization options specified in the structure options. Use optimset to set these options.
[x,resnorm] = lsqlin(...) returns the value of the squared 2-norm of the residual, norm ($\left.C^{*} x-d\right)^{\wedge} 2$.
[x,resnorm,residual] = lsqlin(...) returns the residual C*x-d.
[x,resnorm,residual,exitflag] = lsqlin(...) returns a value exitflag that describes the exit condition.
[x,resnorm, residual,exitflag,output] = lsqlin(...) returns a structure output that contains information about the optimization.
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x.
"Function Arguments" on page 6-2 contains general descriptions of arguments passed into lsqlin. "Options" on page 8-151 provides the options values specific to lsqlin.
"Function Arguments" on page 6-2 contains general descriptions of arguments returned by lsqlin. This section provides function-specific details for exitflag, lambda, and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated:

Function converged to a solution x.

3
Change in the residual was smaller than the specified tolerance.

| | 0 | Number of iterations exceeded options.MaxIter. |
| :---: | :---: | :---: |
| | -2 | The problem is infeasible. |
| | -4 | Ill-conditioning prevents further optimization. |
| | -7 | Magnitude of search direction became too small. No further progress could be made. |
| lambda | Structure conta the solution x (s fields are | ing the Lagrange multipliers at parated by constraint type). The |
| | lower | Lower bounds lb |
| | upper | Upper bounds ub |
| | ineqlin | Linear inequalities |
| | eqlin | Linear equalities |
| output | Structure conta optimization. Th | ning information about the fields are |
| | iterations | Number of iterations taken |
| | algorithm | Algorithm used |
| | cgiterations | Number of PCG iterations (large-scale algorithm only) |
| | firstorderopt | Measure of first-order optimality (large-scale algorithm only) |
| | | For large-scale bound constrained problems, the first-order optimality is the infinity norm of $v . * g$, where v is defined as in "Box Constraints" on page $4-10$, and g is the gradient $g=C^{\mathrm{T}} C x+C^{\mathrm{T}} d$ (see |

Optimization options used by lsqlin. You can set or change the values of these options using the optimset function. Some options apply to all algorithms, some are only relevant when you are using the large-scale algorithm, and others are only relevant when using the medium-scale algorithm. See "Optimization Options" on page 6-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference, because certain conditions must be met to use the large-scale algorithm. For lsqlin, when the problem has only upper and lower bounds, i.e., no linear inequalities or equalities are specified, the default algorithm is the large-scale method. Otherwise the medium-scale algorithm is used:

$$
\begin{array}{ll}
\text { LargeScale } & \text { Use large-scale algorithm if possible when set to } \\
\text { 'on'. Use medium-scale algorithm when set to } \\
\text { 'off'. }
\end{array}
$$

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

| Diagnostics | Display diagnostic information about the function
 to be minimized. |
| :--- | :--- |
| Display | Level of display. 'off ' displays no output; ' f inal'
 (default) displays just the final output. |
| MaxIter | Maximum number of iterations allowed. |
| TypicalX | Typical x values. |

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

JacobMult Function handle for Jacobian multiply function. For large-scale structured problems, this function computes the Jacobian matrix product J*Y, J'*Y, or $J^{\prime *}(J * Y)$ without actually forming J. The function is of the form
W = jmfun(Jinfo, Y,flag, p1,p2,....)
where Jinfo and the additional parameters $\mathrm{p} 1, \mathrm{p} 2, \ldots$ contain the matrices used to compute $J * Y\left(\right.$ or $J^{\prime *} Y$, or $J^{\prime *}(J * Y)$). The first argument Jinfo must be the same as the second argument returned by the objective function fun, for example by

$$
[F, J i n f o]=\text { fun }(x)
$$

Y is a matrix that has the same number of rows as there are dimensions in the problem. flag determines which product to compute:

- If flag == 0 then $W=J^{\prime *}(J * Y)$.
- If flag > 0 then $W=J * Y$.
- If flag < 0 then $W=J^{\prime *}$.

In each case, J is not formed explicitly. fsolve uses Jinfo to compute the preconditioner. The optional parameters p1, p2, ... can be any additional parameters needed by jmfun. See "Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 for information on how to supply values for these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo to be passed from fun to jmfun.

| | See "Nonlinear Minimization with a Dense but
 Structured Hessian and Equality Constraints" on
 page 2-60 for a similar example. |
| :--- | :--- |
| MaxPCGIter | Maximum number of PCG (preconditioned
 conjugate gradient) iterations (see "Algorithm" on
 page 8-155). |
| PrecondBandWidthUpper bandwidth of preconditioner for PCG. By | |
| default, diagonal preconditioning is used (upper | |
| bandwidth of 0). For some problems, increasing the | |
| bandwidth reduces the number of PCG iterations. | |

Examples

Find the least-squares solution to the overdetermined system $C \cdot x=d$ subject to $A \cdot x \leq b$ and $l b \leq x \leq u b$.

First, enter the coefficient matrices and the lower and upper bounds.

| $C=$ | $[$ | | |
| ---: | :--- | :--- | :--- |
| | 0.9501 | 0.7620 | 0.6153 |
| | 0.2311 | 0.4564 | 0.7919 |
| | 0.6068 | 0.0185 | 0.9354 |
| | 0.4859 | 0.8214 | 0.7382 |
| | 0.8912 | 0.4447 | 0.1762 |
| $d=$ | $[$ | | 0.4102 |
| | 0.0578 | | |
| | 0.3528 | | |
| | 0.8131 | | |
| | 0.0098 | | |

Isqlin

```
    0.1388];
A =[
    0.2027 0.2721 0.7467 0.4659
    0.1987 0.1988 0.4450 0.4186
    0.6037 0.0152 0.9318 0.8462];
b =[
    0.5251
    0.2026
    0.6721];
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);
```

Next, call the constrained linear least-squares routine.
[x,resnorm,residual,exitflag,output,lambda] = ... lsqlin(C, d,A,b,[],[],lb,ub);

Entering x, lambda.ineqlin, lambda.lower, lambda.upper produces

```
x =
    -0.1000
    -0.1000
    0.2152
    0.3502
lambda.ineqlin =
        0
        0.2392
            0
lambda.lower =
    0.0409
        0.2784
        0
        0
lambda.upper =
    0
    0
    0
```

Nonzero elements of the vectors in the fields of lambda indicate active constraints at the solution. In this case, the second inequality constraint (in lambda.ineqlin) and the first lower and second lower bound constraints (in lambda.lower) are active constraints (i.e., the solution is on their constraint boundaries).

Notes

For problems with no constraints, use \backslash (matrix left division). For example, $x=A \backslash b$.

Because the problem being solved is always convex, lsqlin will find a global, although not necessarily unique, solution.

Better numerical results are likely if you specify equalities explicitly, using Aeq and beq, instead of implicitly, using $l b$ and ub.

Large-Scale Optimization

If $x 0$ is not strictly feasible, lsqlin chooses a new strictly feasible (centered) starting point.
If components of x have no upper (or lower) bounds, set the corresponding components of ub (or lb) to Inf (or - Inf for lb) as opposed to an arbitrary but very large positive (or negative in the case of lower bounds) number.

Algorithm

Large-Scale Optimization

When the problem given to lsqlin has only upper and lower bounds; i.e., no linear inequalities or equalities are specified, and the matrix C has at least as many rows as columns, the default algorithm is the large-scale method. This method is a subspace trust region method based on the interior-reflective Newton method described in [1]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear Minimization" on page 4-3 and "Preconditioned Conjugate Gradients" on page 4-7.

Medium-Scale Optimization

lsqlin, with the LargeScale option set to 'off' with optimset, or when linear inequalities or equalities are given, is based on quadprog, which uses an active set method similar to that described in [2]. It finds an initial feasible solution by first solving a linear programming problem. See "Quadratic Programming" on page 4-13.

Diagnostics Large-Scale Optimization

The large-scale method does not allow equal upper and lower bounds. For example, if $1 \mathrm{~b}(2)==\mathrm{ub}(2)$, then lsqlin gives the following error:

Equal upper and lower bounds not permitted in this large-scale method.
Use equality constraints and the medium-scale method instead.
At this time, you must use the medium-scale algorithm to solve equality constrained problems.

Medium-Scale Optimization

If the matrices C, A, or Aeq are sparse, and the problem formulation is not solvable using the large-scale method, lsqlin warns that the matrices are converted to full.

```
Warning: This problem formulation not yet available for sparse
matrices.
Converting to full to solve.
```

When a problem is infeasible, lsqlin gives a warning:

```
Warning: The constraints are overly stringent;
    there is no feasible solution.
```

In this case, lsqlin produces a result that minimizes the worst case constraint violation.

When the equality constraints are inconsistent, lsqlin gives

```
Warning: The equality constraints are overly stringent;
    there is no feasible solution.
```

Limitations

References

See Also

At this time, the only levels of display, using the Display option in options, are 'off' and 'final'; iterative output using 'iter' is not available.
[1] Coleman, T.F. and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables," SIAM Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.
[2] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization, Academic Press, London, UK, 1981.

(matrix left division), lsqnonneg, quadprog

Purpose
Equation

Syntax

Description

Solve nonlinear least-squares (nonlinear data-fitting) problems
Solves nonlinear least-squares curve fitting problems of the form

$$
\min _{x}(f(x))=f_{1}(x)^{2}+f_{2}(x)^{2}+f_{3}(x)^{2}+\ldots+f_{m}(x)^{2}
$$

```
x = lsqnonlin(fun, x0)
x = lsqnonlin(fun, x 0, lb,ub)
x = lsqnonlin(fun, x 0, lb,ub,options)
[x,resnorm] = lsqnonlin(...)
[x,resnorm,residual] = lsqnonlin(...)
[x,resnorm,residual,exitflag] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output, lambda,
    jacobian] = lsqnonlin(...)
```

lsqnonlin solves nonlinear least-squares problems, including nonlinear data-fitting problems.

Rather than compute the value $f(x)$ (the sum of squares), lsqnonlin requires the user-defined function to compute the vector-valued function

$$
F(x)=\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x) \\
f_{3}(x)
\end{array}\right]
$$

Then, in vector terms, you can restate this optimization problem as

$$
\min _{x} \frac{1}{2}\|F(x)\|_{2}^{2}=\frac{1}{2} \sum_{i} f_{i}(x)^{2}
$$

where x is a vector and $F(x)$ is a function that returns a vector value. $x=1$ sqnonlin(fun, $x 0$) starts at the point $x 0$ and finds a minimum of the sum of squares of the functions described in fun. fun should
return a vector of values and not the sum of squares of the values. (The algorithm implicitly sums and squares fun(x).)
$x=1$ sqnonlin(fun, $x 0,1 b, u b$) defines a set of lower and upper bounds on the design variables in x, so that the solution is always in the range $\mathrm{lb}<=\mathrm{x}<=\mathrm{ub}$.
$x=1 s q n o n l i n(f u n, x 0, l b, u b, o p t i o n s)$ minimizes with the optimization options specified in the structure options. Use optimset to set these options. Pass empty matrices for $l b$ and $u b$ if no bounds exist.
[x, resnorm] $=$ lsqnonlin(...) returns the value of the squared 2 -norm of the residual at x : sum (fun (x). ${ }^{\wedge} 2$).
[x, resnorm, residual] = lsqnonlin(...) returns the value of the residual fun(x) at the solution x.
[x,resnorm,residual,exitflag] = lsqnonlin(...) returns a value exitflag that describes the exit condition.
[x,resnorm,residual,exitflag, output] = lsqnonlin(...) returns a structure output that contains information about the optimization.
[x,resnorm, residual,exitflag,output,lambda] =
lsqnonlin(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x.

```
[x,resnorm,residual,exitflag,output,lambda,jacobian] = lsqnonlin(...) returns the Jacobian of fun at the solution \(x\).
```


Input Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into lsqnonlin. This section provides function-specific details for fun and options:
fun The function whose sum of squares is minimized. fun is a function that accepts a vector x and returns a vector F, the objective functions evaluated at x. The function fun can be specified as a function handle for an M-file function

$$
x=\text { lsqnonlin(@myfun, x0) }
$$

where myfun is a MATLAB function such as

```
function F = myfun(x)
F = ... % Compute function values at x
```

fun can also be a function handle for an anonymous function.

$$
x=\operatorname{lsqnonlin}(@(x) \sin (x . * x), x 0) ;
$$

If the Jacobian can also be computed and the Jacobian option is ' on ', set by

```
options = optimset('Jacobian','on')
```

then the function fun must return, in a second output argument, the Jacobian value J, a matrix, at x. Note that by checking the value of nargout the function can avoid computing J when fun is called with only one output argument (in the case where the optimization algorithm only needs the value of F but not J).

```
function [F,J] = myfun(x)
F = .. % Objective function values at x
if nargout > 1 % Two output arguments
    J = ... % Jacobian of the function evaluated at x
end
```

If fun returns a vector (matrix) of m components and x has length n, where n is the length of $\times 0$, then the Jacobian J is an m-by-n matrix where $J(i, j)$ is the partial derivative of

> F(i) with respect to $\times(\mathrm{j})$. (Note that the Jacobian J is the transpose of the gradient of F.)
> options "Options" on page 8-163 provides the function-specific details for the options values.

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments returned by lsqnonlin. This section provides function-specific details for exitflag, lambda, and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated:

1
2

3

4

0
-4

Function converged to a solution x.
Change in x was less than the specified tolerance.

Change in the residual was less than the specified tolerance.

Magnitude of search direction was smaller than the specified tolerance.
Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.

Algorithm was terminated by the output function.

Problem is infeasible: the bounds lb and ub are inconsistent.

Line search could not sufficiently decrease the residual along the current search direction.

| lambda | Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields are | |
| :---: | :---: | :---: |
| | lower | Lower bounds 1b |
| | upper | Upper bounds ub |
| output | Structure containing information about the optimization. The fields of the structure are | |
| | iterations | Number of iterations taken |
| | funcCount | The number of function evaluations |
| | algorithm | Algorithm used |
| | cgiterations | Number of PCG iterations (large-scale algorithm only) |
| | stepsize | The final step size taken (medium-scale algorithm only) |
| | firstorderopt | Measure of first-order optimality (large-scale algorithm only) |
| | | For large-scale bound constrained problems, the first-order optimality is the infinity norm of $v . * g$, where v is defined as in "Box Constraints" on page 4-10, and g is the gradient $g=J^{\mathrm{T}} F$ (see "Nonlinear Least-Squares" on page 4-12). |

Note The sum of squares should not be formed explicitly. Instead, your function should return a vector of function values. See "Examples" on page 8-167.

Options

Optimization options. You can set or change the values of these options using the optimset function. Some options apply to all algorithms, some are only relevant when you are using the large-scale algorithm, and others are only relevant when you are using the medium-scale algorithm. See "Optimization Options" on page 6-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference because certain conditions must be met to use the large-scale or medium-scale algorithm. For the large-scale algorithm, the nonlinear system of equations cannot be underdetermined; that is, the number of equations (the number of elements of F returned by fun) must be at least as many as the length of x. Furthermore, only the large-scale algorithm handles bound constraints:

LargeScale Use large-scale algorithm if possible when set to 'on '. Use medium-scale algorithm when set to 'off'.

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

DerivativeCheck Compare user-supplied derivatives (Jacobian) to finite-differencing derivatives.

| Diagnostics | Display diagnostic information about the function
 to be minimized. |
| :--- | :--- |
| DiffMaxChange | Maximum change in variables for finite
 differencing. |
| DiffMinChange | Minimum change in variables for finite
 differencing. |
| Display | Level of display. 'off ' displays no output;
 'iter' displays output at each iteration; 'final'
 (default) displays just the final output. |

| Jacobian | If 'on', lsqnonlin uses a user-defined Jacobian
 (defined in fun), or Jacobian information (when
 using JacobMult), for the objective function. If
 'off', lsqnonlin approximates the Jacobian
 using finite differences. |
| :--- | :--- |
| MaxFunEvals | Maximum number of function evaluations allowed. |
| MaxIter | Maximum number of iterations allowed. |
| OutputFcn | Specify one or more user-defined functions that an
 optimization function calls at each iteration. See
 "Output Function" on page 6-16. |
| PlotFcns | Plots various measures of progress while the
 algorithm executes, select from predefined plots
 or write your own. Specifying @optimplotx plots
 the current point; @optimplotfunccount plots the
 function count; @optimplotfval plots the function
 value; @optimplotresnorm plots the norm of the |
| residuals; @optimplotstepsize plots the step size; | |
| @optimplotfirstorderopt plots the first-order | |
| of optimality. | |

These options are used only by the large-scale algorithm:

JacobMult \quad| Function handle for Jacobian multiply function. |
| :--- |
| For large-scale structured problems, this function |
| computes the Jacobian matrix product $J * Y, ~ J ' * Y$, |
| or $J^{\prime *}(J * Y)$ without actually forming J. The |
| function is of the form |

W = jmfun(Jinfo, Y,flag, p1, p2,....)
where Jinfo and the additional parameters $\mathrm{p} 1, \mathrm{p} 2, \ldots$ contain the matrices used to compute $J * Y\left(o r J^{\prime *} Y\right.$, or $J^{\prime *}(J * Y)$). The first argument Jinfo must be the same as the second argument returned by the objective function fun, for example by

$$
[F, J i n f o]=\text { fun }(x)
$$

Y is a matrix that has the same number of rows as there are dimensions in the problem. flag determines which product to compute:

- If flag $==0$ then $W=J^{\prime *}(J * Y)$.
- If flag > 0 then $W=J * Y$.
- If flag < 0 then $W=J^{\prime *}$.

In each case, J is not formed explicitly. lsqnonlin uses Jinfo to compute the preconditioner. The optional parameters p1, $\mathrm{p} 2, \ldots$ can be any additional parameters needed by jmfun. See "Avoiding Global Variables via Anonymous and Nested Functions" on page 2-20 for information on how to supply values for these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo to be passed from fun to jmfun.

| | See "Nonlinear Minimization with a Dense but
 Structured Hessian and Equality Constraints" on
 page 2-60 for a similar example. |
| :--- | :--- |
| JacobPattern | Sparsity pattern of the Jacobian for finite
 differencing. If it is not convenient to compute
 the Jacobian matrix J in fun, lsqnonlin can
 approximate J via sparse finite differences,
 provided the structure of J, i.e., locations of
 the nonzeros, is supplied as the value for
 JacobPattern. In the worst case, if the structure
 is unknown, you can set JacobPattern to be
 a dense matrix and a full finite-difference
 approximation is computed in each iteration (this
 is the default if JacobPattern is not set). This
 can be very expensive for large problems, so it is |
| usually worth the effort to determine the sparsity | |
| structure. | |
| MaxPCGIter | Maximum number of PCG (preconditioned
 conjugate gradient) iterations (see "Algorithm"
 on page 8-168). |
| PrecondBandWidthUpper bandwidth of preconditioner for PCG. By
 default, diagonal preconditioning is used (upper | |
| bandwidth of 0). For some problems, increasing | |
| the bandwidth reduces the number of PCG | |
| iterations. Setting PrecondBandWidth to ' Inf' | |

Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:

| LevenbergMarquardt | Choose Levenberg-Marquardt over
 Gauss-Newton algorithm. |
| :--- | :--- |
| LineSearchType | Line search algorithm choice. |

Examples \quad Find x that minimizes

$$
\sum_{k=1}^{10}\left(2+2 k-e^{k x_{1}}-e^{k x_{2}}\right)^{2}
$$

starting at the point $\mathrm{x}=[0.3,0.4]$.
Because lsqnonlin assumes that the sum of squares is not explicitly formed in the user-defined function, the function passed to lsqnonlin should instead compute the vector-valued function

$$
F_{k}(x)=2+2 k-e^{k x_{1}}-e^{k x_{2}}
$$

for $k=1$ to 10 (that is, F should have k components).
First, write an M-file to compute the k-component vector F .

```
function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-\operatorname{exp}(k*x(2));
```

Next, invoke an optimization routine.

```
x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0) % Invoke optimizer
```

After about 24 function evaluations, this example gives the solution

$$
x=0.2578 \quad 0.2578
$$

```
resnorm % Residual or sum of squares
resnorm =
    124.3622
```


Algorithm

Diagnostics

Large-Scale Optimization

By default lsqnonlin chooses the large-scale algorithm. This algorithm is a subspace trust region method and is based on the interior-reflective Newton method described in [1] and [2]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear Minimization" on page 4-3 and "Preconditioned Conjugate Gradients" on page 4-7.

Medium-Scale Optimization

If you set the LargeScale option set to 'off' with optimset, lsqnonlin uses the Levenberg-Marquardt method with line search [4], [5], and [6]. Alternatively, you can select a Gauss-Newton method [6] with line search by setting the LevenbergMarquardt option. Setting LevenbergMarquardt to 'off' (and LargeScale to 'off') selects the Gauss-Newton method, which is generally faster when the residual $\|F(x)\|_{2}^{2}$ is small.

The default line search algorithm, i.e., the LineSearchType option set to 'quadcubic', is a safeguarded mixed quadratic and cubic polynomial interpolation and extrapolation method. You can select a safeguarded cubic polynomial method by setting the LineSearchType option to 'cubicpoly'. This method generally requires fewer function evaluations but more gradient evaluations. Thus, if gradients are being supplied and can be calculated inexpensively, the cubic polynomial line search method is preferable. The algorithms used are described fully in Chapter 3, "Standard Algorithms".

Large-Scale Optimization

The large-scale method does not allow equal upper and lower bounds. For example, if $\operatorname{lb}(2)==u b(2)$, lsqlin gives the error

Equal upper and lower bounds not permitted.

(lsqnonlin does not handle equality constraints, which is another way to formulate equal bounds. If equality constraints are present, use fmincon, fminimax, or fgoalattain for alternative formulations where equality constraints can be included.)

Limitations

The function to be minimized must be continuous. lsqnonlin might only give local solutions.
lsqnonlin only handles real variables. When x has complex variables, the variables must be split into real and imaginary parts.

Large-Scale Optimization

The large-scale method for lsqnonlin does not solve underdetermined systems; it requires that the number of equations (i.e., the number of elements of F) be at least as great as the number of variables. In the underdetermined case, the medium-scale algorithm is used instead. (If bound constraints exist, a warning is issued and the problem is solved with the bounds ignored.) See Large-Scale Problem Coverage and Requirements on page 2-42 for more information on what problem formulations are covered and what information must be provided.

The preconditioner computation used in the preconditioned conjugate gradient part of the large-scale method forms $J T J$ (where J is the Jacobian matrix) before computing the preconditioner; therefore, a row of J with many nonzeros, which results in a nearly dense product $J \mathrm{~T} J$, can lead to a costly solution process for large problems.
If components of x have no upper (or lower) bounds, then lsqnonlin prefers that the corresponding components of ub (or lb) be set to inf (or - inf for lower bounds) as opposed to an arbitrary but very large positive (or negative for lower bounds) number.

Medium-Scale Optimization

The medium-scale algorithm does not handle bound constraints.
Because the large-scale algorithm does not handle underdetermined systems and the medium-scale algorithm does not handle bound
constraints, problems with both these characteristics cannot be solved by lsqnonlin.

References

See Also
[1] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.
[2] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
[3] Dennis, J.E., Jr., "Nonlinear Least-Squares," State of the Art in Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.
[4] Levenberg, K., "A Method for the Solution of Certain Problems in Least-Squares," Quarterly Applied Math. 2, pp. 164-168, 1944.
[5] Marquardt, D., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," SIAM Journal Applied Math., Vol. 11, pp. 431-441, 1963.
[6] Moré, J.J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
@(function_handle), lsqcurvefit, lsqlin, optimset

Purpose

Equation

Solve nonnegative least-squares constraint problem

Solves nonnegative least-squares curve fitting problems of the form

$$
\min _{x} \frac{1}{2}\|C x-d\|_{2}^{2} \quad \text { such that } \quad x \geq 0
$$

where the matrix C and the vector d are the coefficients of the objective function. The vector, x, of independent variables is restricted to be nonnegative.

Syntax

```
x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)
```


Description

$x=1$ sqnonneg (C, d) returns the vector x that minimizes norm ($C * x-d)$ subject to $x>=0$. C and d must be real.
$\mathrm{x}=1$ sqnonneg $(\mathrm{C}, \mathrm{d}, \mathrm{x} 0)$ uses x 0 as the starting point if all $\times 0>=0$; otherwise, the default is used. The default start point is the origin (the default is also used when $x 0==[$] or when only two input arguments are provided).
$x=$ lsqnonneg ($C, d, x 0$, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
[x,resnorm] = lsqnonneg(...) returns the value of the squared 2 -norm of the residual, norm ($C * x-d)^{\wedge} 2$.
[x,resnorm, residual] = lsqnonneg(...) returns the residual C*x-d.
[x,resnorm, residual,exitflag] = lsqnonneg(...) returns a value exitflag that describes the exit condition of lsqnonneg.
[x,resnorm, residual,exitflag,output] = lsqnonneg(...) returns a structure output that contains information about the optimization.
[x,resnorm, residual,exitflag,output,lambda] =
lsqnonneg(...) returns the Lagrange multipliers in the vector lambda.

Input Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into lsqnonneg. This section provides function-specific details for options:

| options | Use optimset to set or change the values of these
 fields in the options structure, options. See
 "Optimization Options" on page 6-8 for detailed
 information. |
| :--- | :--- |
| Display \quadLevel of display. 'off' displays no
 output; 'final' displays just the final
 output; 'notify ' (default) displays
 output only if the function does not
 converge. | |
| TolX | Termination tolerance on x. |

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments returned by lsqnonneg. This section provides function-specific details for exitflag, lambda, and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated.

| 1 | Function converged to a
 solution x. |
| :--- | :--- |
| 0 | Number of iterations exceeded
 options.MaxIter. |

| lambda | Vector containing the Lagrange multipliers: lambda(i)<=0 when $x(i)$ is (approximately 0 , and lambda(i) is (approximately) 0 when $x(i)>0$. |
| :---: | :---: |
| output | Structure containing information about the optimization. The fields are |
| | iterations Number of iterations taken |
| | algorithm Algorithm used |

Examples

Compare the unconstrained least-squares solution to the lsqnonneg solution for a 4-by-2 problem.

```
C = [
    \(0.0372 \quad 0.2869\)
    \(0.6861 \quad 0.7071\)
    \(0.6233 \quad 0.6245\)
    \(0.6344 \quad 0.6170]\);
d = [
        0.8587
        0.1781
        0.0747
        0.8405];
[C\d, lsqnonneg(C,d)] =
    -2.5627 0
        \(3.1108 \quad 0.6929\)
[norm(C*(C\d)-d), norm(C*lsqnonneg(C,d)-d)] =
    0.66740 .9118
```

The solution from lsqnonneg does not fit as well as the least-squares solution. However, the nonnegative least-squares solution has no negative components.

Algorithm

Notes

References

See Also

lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set of possible basis vectors and computes the associated dual vector lambda. It then selects the basis vector corresponding to the maximum value in lambda in order to swap it out of the basis in exchange for another possible candidate. This continues until lambda <= 0 .

The nonnegative least-squares problem is a subset of the constrained linear least-squares problem. Thus, when C has more rows than columns (i.e., the system is overdetermined),
[x,resnorm, residual,exitflag,output,lambda] = lsqnonneg(C,d)
is equivalent to

```
    [m,n] = size(C);
[x,resnorm,residual,exitflag,output,lambda_lsqlin] =
        lsqlin(C,d,-eye(n,n),zeros(n,1));
```

except that lambda = -lambda_lsqlin.ineqlin.
For problems greater than order 20, lsqlin might be faster than lsqnonneg; otherwise lsqnonneg is generally more efficient.
[1] Lawson, C.L. and R.J. Hanson, Solving Least-Squares Problems, Prentice-Hall, Chapter 23, p. 161, 1974.

I (matrix left division), lsqlin, optimset

Purpose Optimization options values

```
Syntax val = optimget(options,'param')
val = optimget(options,'param',default)
```

Description val = optimget (options, 'param') returns the value of the specified option in the optimization options structure options. You need to type only enough leading characters to define the option name uniquely. Case is ignored for option names.
val = optimget(options,'param',default) returns default if the specified option is not defined in the optimization options structure options. Note that this form of the function is used primarily by other optimization functions.

Examples This statement returns the value of the Display option in the structure

```
val = optimget(my_options,'Display')
```

This statement returns the value of the Display option in the structure called my_options (as in the previous example) except that if the Display option is not defined, it returns the value 'final'.

```
optnew = optimget(my_options,'Display','final');
```


See Also

Purpose Create or edit optimization options structure
$\begin{array}{ll}\text { Syntax } & \begin{array}{l}\text { options }= \\ \text { optimset }\end{array} \\ \begin{array}{l}\text { options }= \\ \\ \text { options }\end{array}=\text { optimset } \\ \text { optimset (optimfun) } \\ \text { options }= & \text { optimset(oldopts, 'param1' ', value1, } \ldots \text {) }\end{array}$ creates an optimization options structure called options, in which the specified options (param) have specified values. Any unspecified options are set to [] (options with value [] indicate to use the default value for that option when you pass options to the optimization function). It is sufficient to type only enough leading characters to define the option name uniquely. Case is ignored for option names.
optimset with no input or output arguments displays a complete list of options with their valid values.
options = optimset (with no input arguments) creates an options structure options where all fields are set to [].
options = optimset(optimfun) creates an options structure options with all option names and default values relevant to the optimization function optimfun.
options = optimset(oldopts,'param1', value1, ...) creates a copy of oldopts, modifying the specified options with the specified values.
options = optimset(oldopts, newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any options in newopts with nonempty values overwrite the corresponding old options in oldopts.

Options

For more information about individual options, see the reference pages for the optimization functions that use these options. "Optimization Options" on page 6-8 provides descriptions of these options and which functions use them.

In the following lists, values in \{ \} denote the default value; some options have different defaults for different optimization functions and so no values are shown in $\}$.

You can also view the optimization options and defaults by typing optimset at the command line.
Optimization options used by both large-scale and medium-scale algorithms:

| DerivativeCheck | 'on' \| \{'off'\} | | |
|---|---|---|---|
| Diagnostics | 'on' \| \{'off'\} |
| Display | 'off' \| 'iter'|'final' |'notify' |
| FunValCheck | \{'off'\} \| 'on' |
| GradObj | 'on' \| \{'off'\} |
| Jacobian | 'on' \| \{'off'\} |
| LargeScale | on' \|'off'. The default for fsolve is 'off'. The default for all other functions that provide a large-scale algorithm is ' on ' |
| MaxFunEvals | Positive integer |
| MaxIter | Positive integer |
| OutputFen | function_handle \| \{[]\}. Specify one or more (using a cell array of function handles) user-defined functions that an optimization function calls at each iteration. See "Output Function" on page 6-16. |
| PlotFens | function_handle \| \{[]\}. Specify one or more (using a cell array of function handles) pre- or user-defined plot functions that an optimization function calls at each iteration. See "Plot Functions" on page 6-25. |
| TolCon | Positive scalar |

| TolFun | Positive scalar |
| :--- | :--- |
| TolX | Positive scalar |
| TypicalX | Vector of all ones |

Optimization options used by large-scale algorithms only:

| Hessian | 'on' \| \{'off'\} | |
|---|---|---|
| HessMult | Function \| \{[]\} |
| HessPattern | Sparse matrix \| \{sparse matrix of all ones\} |
| InitialHessMatrix | ```{'identity'} \| 'scaled-identity' | 'user-supplied'``` |
| InitialHessType | scalar \mid vector $\mid\{[]\}$ |
| JacobMult | Function \| \{[]\} |
| JacobPattern | Sparse matrix \| \{sparse matrix of all ones\} |
| MaxPCGIter | Positive integer \| \{the greater of 1 and floor ($n / 2$)) \} where n is the number of elements in $\times 0$, the starting point |
| PrecondBandWidth | Positive integer \| $\{0\} \mid$ Inf |
| TolPCG | Positive scalar \| $\{0.1$ \} |

Optimization options used by medium-scale algorithms only:

| BranchStrategy | 'mininfeas' \| \{'maxinfeas'\} |
| :--- | :--- |
| DiffMaxChange | Positive scalar \|\{1e-1\} |
| DiffMinChange | Positive scalar \|\{1e-8\} |
| GoalsExactAchieve | Positive scalar integer \|\{0\} |
| GradConstr | 'on' $\mid\{' o f f '\}$ |
| HessUpdate | $\left\{' b f g s^{\prime}\right\}\|' d f p '\| ' s t e e p d e s c ' ~$ |
| LevenbergMarquardt | 'on' $\mid\{' o f f '\}$ |

| LineSearchType | cubicpoly' \| \{'quadcubic'\} | |
|---|---|---|
| MaxNodes | Positive scalar \| \{1000*NumberOfVariables\} |
| MaxRLPIter | Positive scalar \|
 \{100*NumberOfVariables\} |
| MaxSQPIter | Positive integer |
| MaxTime | Positive scalar \| $\{7200\}$ |
| MeritFunction | 'singleobj' \| \{'multiobj'\} |
| MinAbsMax | Positive scalar integer \| 00$\}$ |
| NodeDisplayInterval | Positive scalar \| \{20\} |
| NodeSearchStrategy | 'df' \| \{'bn'\} |
| NonlEqnAlgorithm | \{'dogleg'\} \| 'lm' | 'gn', where 'lm' is Levenburg-Marquardt and ' gn ' is Gauss-Newton. |
| RelLineSrchBnd | Real nonnegative scalar \| $\{[]\}$ |
| RelLineSrchBndDuration | Positive integer \| $\{1\}$ |
| Simplex | When you set 'Simplex' to 'on' and 'LargeScale' to 'off', fmincon uses the simplex algorithm to solve a contrained linear programming problem. |
| TolRLPFun | Positive scalar \| $\{1 \mathrm{e}-6\}$ |
| TolXInteger | Positive scalar \| $\{1 \mathrm{e}-8\}$ |
| This statement creates an optis options in which the Displ option is set to $1 \mathrm{e}-8$.
 options = optimset('D | ptimization options structure called ay option is set to 'iter' and the TolFun
 isplay', 'iter', 'TolFun', 1e-8) |

This statement makes a copy of the options structure called options, changing the value of the TolX option and storing new values in optnew.

```
optnew = optimset(options,'TolX',1e-4);
```

This statement returns an optimization options structure options that contains all the option names and default values relevant to the function fminbnd.

```
options = optimset('fminbnd')
```

If you only want to see the default values for fminbnd, you can simply type
optimset fminbnd
or equivalently
optimset('fminbnd')

See Also

optimget

Purpose

Tool to select solver, optimization options, and run problems

Syntax

optimtool
optimtool(optstruct)
optimtool('solver')

Description

optimtool opens the Optimization tool, a graphical user interface (GUI)
for selecting a solver, the optimization options, and running problems. See Chapter 5, "Optimization Tool" for a complete description of the tool.
optimtool can be used to run any optimization solver in the Optimization Toolbox. Results can be exported to an M-file or to the MATLAB workspace as a structure.
optimtool(optstruct) starts the Optimization Tool with optstruct. optstruct can either be an optimization options structure or optimization problem structure. An options structure can be created using the optimset function or by using the export option from optimtool. A problem structure can be created or modified in optimtool by exporting the problem information to the MATLAB workspace.
optimtool('solver') starts the Optimization Tool with the specified solver, identified as a string, and the corresponding default options and problem fields. The solver functions available in the Optimization Toolbox are valid inputs to the optimtool.

optimtool

See Also
 optimset

Purpose

Solve quadratic programming problems

Equation

Finds a minimum for a problem specified by

$$
\min _{x} \frac{1}{2} x^{T} H x+f^{T} x \quad \text { such that } \quad A \cdot x \leq b, \begin{array}{ll}
& A e q \cdot x=b e q \\
& l b \leq x \leq u b
\end{array}
$$

where H, A, and $A e q$ are matrices, and $f, b, b e q, l b, u b$, and x are vectors.

Syntax

```
x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
[x,fval] = quadprog(...)
[x,fval,exitflag] = quadprog(...)
[x,fval,exitflag,output] = quadprog(...)
[x,fval,exitflag,output,lambda] = quadprog(...)
```


Description

$x=$ quadprog (H, f, A, b) returns a vector x that minimizes
1/2*x'*H*x + f'*x subject to $A * x<=b$.
$x=$ quadprog ($H, f, A, b, A e q, b e q)$ solves the preceding problem while additionally satisfying the equality constraints Aeq*x = beq.
$x=$ quadprog ($H, f, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables, x, so that the solution is in the range lb <= x <= ub.
$\mathrm{x}=$ quadprog $(\mathrm{H}, \mathrm{f}, \mathrm{A}, \mathrm{b}, \mathrm{Aeq}, \mathrm{beq}, \mathrm{lb}, \mathrm{ub}, \mathrm{xO})$ sets the starting point to x 0 .
$x=$ quadprog($H, f, A, b, A e q, b e q, l b, u b, x 0, o p t i o n s)$ minimizes with the optimization options specified in the structure options. Use optimset to set these options.

quadprog

[x,fval] = quadprog(...) returns the value of the objective function at x :

```
fval = 0.5*x'*H*x + f'*x.
```

[x,fval,exitflag] = quadprog(...) returns a value exitflag that describes the exit condition of quadprog.
[x,fval,exitflag,output] = quadprog(...) returns a structure output that contains information about the optimization.
[x,fval,exitflag,output,lambda] = quadprog(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x .

Input Arguments

Output Arguments

"Function Arguments" on page 6-2 contains general descriptions of arguments passed into quadprog. "Options" on page 8-186 provides function-specific details for the options values.
"Function Arguments" on page 6-2 contains general descriptions of arguments returned by quadprog. This section provides function-specific details for exitflag, lambda, and output:

0
-2
-3
-4
-7

Number of iterations exceeded options.MaxIter. Problem is infeasible. Problem is unbounded.

Current search direction was not a direction of descent. No further progress could be made.

Magnitude of search direction became too small. No further progress could be made.
output
Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields are

| lower | Lower bounds lb |
| :--- | :--- |
| upper | Upper bounds ub |
| ineqlin | Linear inequalities |
| eqlin | Linear equalities |
| Structure containing information about the
 optimization. The fields are | |

iterations | Number of iterations |
| :--- |
| taken |

algorithm Algorithm used

quadprog

$\left.\begin{array}{cl}\text { cgiterations } & \begin{array}{l}\text { Number of PCG iterations } \\ \text { (large-scale algorithm } \\ \text { only) }\end{array} \\ \text { firstorderopt } & \begin{array}{l}\text { Measure of first-order } \\ \text { optimality (large-scale } \\ \text { algorithm only) }\end{array} \\ & \begin{array}{l}\text { For large-scale bound } \\ \text { constrained problems, } \\ \text { the first-order optimality }\end{array} \\ & \text { is the infinity norm of } \\ & \text {. *g, where v is defined } \\ \text { as in "Box Constraints" } \\ \text { on page 4-10, and g is the } \\ \text { gradient. }\end{array}\right\}$

Options

Optimization options. Use optimset to set or change the values of these options. Some options apply to all algorithms, some are only relevant when using the large-scale algorithm, and others are only relevant when you are using the medium-scale algorithm. See "Optimization Options" on page 6-8 for detailed information.

The option to set an algorithm preference is as follows.

| LargeScale | Use large-scale algorithm if possible when set to
 'on'. Use medium-scale algorithm when set to
 'off'.
 'on' is only a preference. If the problem has only
 upper and lower bounds; i.e., no linear inequalities
 or equalities are specified, the default algorithm is
 the large-scale method. Or, if the problem given
 to quadprog has only linear equalities; i.e., no
 upper and lower bounds or linear inequalities
 are specified, and the number of equalities is
 no greater than the length of x, the default
 algorithm is the large-scale method. Otherwise
 the medium-scale algorithm is used. |
| :--- | :--- |

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

Diagnostics Display diagnostic information about the function to be minimized.
Display Level of display. 'off' displays no output, and 'final' (default) displays just the final output.

MaxIter Maximum number of iterations allowed.
TypicalX Typical x values.

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

quadprog

| HessMult | Function handle for Hessian multiply function. For large-scale structured problems, this function computes the Hessian matrix product $\mathrm{H} * \mathrm{Y}$ without actually forming H . The function is of the form $\text { W = hmfun(Hinfo, } \mathrm{Y} \text {) }$
 where Hinfo and possibly some additional parameters contain the matrices used to compute $\mathrm{H}^{*} \mathrm{Y}$.
 See "Quadratic Minimization with a Dense but Structured Hessian" on page 2-66 for an example that uses this option. |
| :---: | :---: |
| MaxPCGIter | Maximum number of PCG (preconditioned conjugate gradient) iterations. See "Algorithm" on page 8-191 for more information. |
| PrecondBandWidth | Upper bandwidth of preconditioner for PCG. By default, diagonal preconditioning is used (upper bandwidth of 0). For some problems, increasing the bandwidth reduces the numbe of PCG iterations. Setting PrecondBandWidth to 'Inf' uses a direct factorization (Cholesky rather than the conjugate gradients (CG). The direct factorization is computationally more expensive than CG, but produces a better quality step towards the solution. |
| TolFun | Termination tolerance on the function value. Tolfun is used as the exit criterion for problems with simple lower and upper bounds (lb, ub). |

TolPCG Termination tolerance on the PCG iteration. TolPCG is used as the exit criterion for problems with only equality constraints (Aeq, beq).

TolX

Termination tolerance on x.

Examples Find values of x that minimize

$$
f(x)=\frac{1}{2} x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}-2 x_{1}-6 x_{2}
$$

subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 2 \\
-x_{1}+2 x_{2} & \leq 2 \\
2 x_{1}+x_{2} & \leq 3 \\
0 \leq x_{1}, \quad 0 & \leq x_{2}
\end{aligned}
$$

First, note that this function can be written in matrix notation as

$$
f(x)=\frac{1}{2} x^{T} H x+f^{T} x
$$

where

$$
H=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right], \quad f=\left[\begin{array}{l}
-2 \\
-6
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Enter these coefficient matrices.

```
H = [1 -1; -1 2]
f = [-2; -6]
A = [1 1; -1 2; 2 1]
b = [2; 2; 3]
lb = zeros(2,1)
```


quadprog

Next, invoke a quadratic programming routine.
[x,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[],[],lb)

This generates the solution

```
x =
    0.6667
    1.3333
fval =
    -8.2222
exitflag =
    1
output =
            iterations: 3
            algorithm: 'medium-scale: active-set'
    firstorderopt: []
        cgiterations: []
lambda.ineqlin
ans =
            3.1111
            0.4444
                    0
lambda.lower
ans =
    0
    0
```

Nonzero elements of the vectors in the fields of lambda indicate active constraints at the solution. In this case, the first and second inequality constraints (in lambda.ineqlin) are active constraints (i.e., the solution is on their constraint boundaries). For this problem, all the lower bounds are inactive.

In general quadprog locates a local solution unless the problem is strictly convex.

Better numerical results are likely if you specify equalities explicitly, using Aeq and beq, instead of implicitly, using lb and ub.

If the components of x have no upper (or lower) bounds, then quadprog prefers that the corresponding components of ub (or lb) be set to Inf (or - Inf for lb) as opposed to an arbitrary but very large positive (or negative in the case of lower bounds) number.

Large-Scale Optimization

By default, quadprog uses the large-scale algorithm if you specify the feasible region using, but not both, of the following types of constraints:

- Upper and lower bounds constraints
- Linear equality constraints, in which the columns of the constraint matrix Aeq are linearly independent. Aeq is typically sparse.

You cannot use inequality constraints with the large-scale algorithm. If the preceding conditions are not met, quadprog reverts to the medium-scale algorithm.

If you do not supply $\times 0$, or $\times 0$ is not strictly feasible, quadprog chooses a new strictly feasible (centered) starting point.
If an equality constrained problem is posed and quadprog detects negative curvature, the optimization terminates because the constraints are not restrictive enough. In this case, exitflag is returned with the value -1, a message is displayed (unless the options Display option is 'off'), and the x returned is not a solution but a direction of negative curvature with respect to H .

For problems with simple lower and upper bounds (lb, ub), quadprog exits based on the value of TolFun. For problems with only equality constraints (Aeq, beq), the exit is based on TolPCG. Adjust TolFun and TolPCG to affect your results. TolX is used by both types of problems.

Algorithm

Large-Scale Optimization

The large-scale algorithm is a subspace trust-region method based on the interior-reflective Newton method described in [1]. Each iteration

quadprog

involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear Minimization" on page 4-3 and "Preconditioned Conjugate Gradients" on page 4-7.

Medium-Scale Optimization

quadprog uses an active set method, which is also a projection method, similar to that described in [2]. It finds an initial feasible solution by first solving a linear programming problem. This method is discussed in Chapter 3, "Standard Algorithms".

Diagnostics Large-Scale Optimization

The large-scale method does not allow equal upper and lower bounds. For example, if $1 \mathrm{lb}(2)==u b(2)$, then quadprog gives this error:

```
Equal upper and lower bounds not permitted in this large-scale
method.
Use equality constraints and the medium-scale method instead.
```

If you only have equality constraints you can still use the large-scale method. But if you have both equalities and bounds, you must use the medium-scale method.

Medium-Scale Optimization

When the problem is infeasible, quadprog gives this warning:

```
Warning: The constraints are overly stringent;
    there is no feasible solution.
```

In this case, quadprog produces a result that minimizes the worst case constraint violation.

When the equality constraints are inconsistent, quadprog gives this warning:

```
Warning: The equality constraints are overly stringent;
    there is no feasible solution.
```

Unbounded solutions, which can occur when the Hessian H is negative semidefinite, can result in

```
Warning: The solution is unbounded and at infinity;
    the constraints are not restrictive enough.
```

In this case, quadprog returns a value of x that satisfies the constraints.

Limitations

References

[1] Coleman, T.F. and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on some of the Variables," SIAM Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.
[2] Gill, P. E. and W. Murray, and M.H. Wright, Practical Optimization, Academic Press, London, UK, 1981.

See Also
 linprog

ε-Constraint method 3-47

A

active constraints
linprog example 8-128
lsqlin example 8-155
quadprog example 8-190
active set method
fmincon medium-scale algorithm 8-49
linprog medium-scale algorithm 8-129
lsqlin medium-scale algorithm 8-156
quadprog medium-scale algorithm 8-192
sequential quadratic programming
(SQP) 3-34
attainment factor 8-23
axis crossing., see zero of a function

B

banana function 3-6
BFGS formula 3-8
fmincon medium-scale algorithm 8-49
fminunc medium-scale algorithm 8-83
bintprog 8-2
bisection search 8-121
bound constraints, large-scale 4-10
box constraints., see bound constraints

C

||C times x minus d|| squared 1-4
centering parameter 4-17
CG., see conjugate gradients
complementarity conditions 4-16
complex variables
lsqcurvefit 8-146
lsqnonlin 8-169
conjugate gradients 4-4
constrained minimization 8-33
large-scale example with bound constraints and banded preconditioner 2-55
with equality constraints 2-58
medium-scale example 2-12
constraints
linear 4-9
fmincon 8-49
fminimax 8-62
positive 2-19
continuous derivative gradient methods 3-6
convex problem 3-29
curve-fitting 7-3 8-134
categories 2-5
functions that apply 7-3

D

data-fitting 7-3 8-134
categories 2-5
functions that apply 7-3
dense columns, constraint matrix 4-17
DFP formula 8-83
direction of negative curvature 4-4
discontinuities 2-99
discontinuous problems
fminsearch 8-69
fminunc 8-83
discrete variables 2-100
dual problem 4-16
duality gap 4-16

E

equality constraints
dense columns 2-75
medium-scale example 2-18
equality constraints inconsistent warning, quadprog 8-192
equality constraints, linear
large-scale 4-9
equation solving
categories 2-5
functions that apply 7-2
error, Out of memory. 2-50

F

feasibility conditions 4-16
feasible point, finding 3-37
fgoalattain 8-11
example 2-37
fixed variables 4-18
fixed-step ODE solver 2-33
fminbnd 8-27
fmincon 8-33
large-scale example
with bound constraints and banded preconditioner 2-55
with equality constraints 2-58
medium-scale example 2-12
fminimax 8-52
example 2-33
fminsearch 8-64
fminunc 8-71
large-scale example 2-51
medium-scale example 2-10
warning messages 2-99
fseminf 8-85
fsolve 8-101
large-scale Jacobian 2-44
medium-scale analytic Jacobian 2-22
medium-scale finite difference Jacobian 2-25
fsolve medium-scale default 8-113
function arguments 6-2
function discontinuities 2-99
functions
grouped by category 7-1
fzero 8-116
fzmult 8-122

G

gangstr 8-123
Gauss-Newton method (large-scale) nonlinear least-squares 4-12
Gauss-Newton method (medium-scale) implementation, nonlinear equations 3-27
implementation, nonlinear least squares 3-22
least-squares optimization $3-20$
solving nonlinear equations 3-25
global minimum 2-98
goal attainment 3-49
example 2-37
fgoalattain 7-2 8-11
goaldemo 8-22
golden section search 8-31
gradient checking, analytic 2-17
gradient examples 2-15
gradient function 2-7
gradient methods
continuous first derivative 3-6
quasi-Newton 3-8
unconstrained optimization 3-6

H

Hessian modified message 3-34
Hessian modified twice message $3-34$
Hessian sparsity structure 2-54
Hessian update 3-11
stage of SQP implementation 3-33
Hessian updating methods 3-8

I

inconsistent constraints 8-132
indefinite problems 8-193
infeasible message 3-34
infeasible optimization problems 2-99
infeasible problems 8-50
infeasible solution warning
linprog 8-132
quadprog 8-192
inline objects 2-95
input arguments 6-2
integer variables 2-100
interior-point linear programming 4-15
introduction to optimization 3-4

J

Jacobian
analytic 2-22
finite difference 2-25
large-scale nonlinear equations 2-44
Jacobian sparsity pattern 2-47

K

Kuhn-Tucker equations 3-29

L

Lagrange multipliers
large-scale linear programming 4-19
large-scale functionality coverage 2-41
large-scale methods 4-1
demos 4-6
examples 2-40
least squares 3-20
categories 2-5
functions that apply 7-3
Levenberg-Marquardt method 3-21
lsqcurvefit medium-scale default 8-145
lsqnonlin medium-scale default 8-168
search direction 3-21
line search
fminunc medium-scale default 8-83
fsolve medium-scale default 8-113
lsqcurvefit medium-scale default 8-145
lsqnonlin medium-scale default $8-168$
unconstrained optimization $3-10$
line search strategy $2-8$
linear constraints 4-9
fmincon 8-49
fminimax 8-62
linear equations solve 8-112
linear least squares
constrained 7-3 8-148
large-scale algorithm 4-14
large-scale example 2-72
nonnegative 7-3 8-171
unconstrained 8-155
linear programming 7-2 8-124
implementation 3-37
large-scale algorithm 4-15
large-scale example
with dense columns in equalities 2-75
with equalities and inequalities 2-73
problem 3-4
linprog 8-124
large-scale example
with dense columns in equalities 2-75
with equalities and inequalities 2-73
LIPSOL 4-15
lower bounds 2-13
lsqcurvefit 8-134
lsqlin 8-148
large-scale example 2-72
lsqnonlin 8-158
convergence 2-101
large-scale example $2-47$
medium-scale example 2-29
lsqnonneg 8-171

M

maximization 2-19
medium-scale methods 3-1
demos 3-5
Mehrotra's predictor-corrector algorithm 4-15
merit function 3-38
minimax examples 2-33
minimax problem, solving 7-2 8-52
minimization
categories 2-3
functions that apply 7-2
multiobjective optimization 3-43
examples 2-26
fgoalattain 7-2 8-11

N

negative curvature direction
in PCG algorithm 4-7
in trust-region methods 4-4
negative definite problems 8-193
Nelder and Mead 3-6
Newton direction
approximate 4-4
Newton's method
systems of nonlinear equations 3-25
unconstrained optimization 3-6
no update message 3-34
nonconvex problems 8-193
noninferior solution 3-45
nonlinear data-fitting
fminsearch 8-70
fminunc 8-82
lsqnonlin 7-3 8-158
nonlinear equations
Newton's method 3-25
nonlinear equations (large-scale)
example with Jacobian 2-44
solving 8-101
nonlinear equations (medium-scale) 3-25
analytic Jacobian example 2-22
finite difference Jacobian example 2-25

Gauss-Newton method 3-25
solving 8-101
trust-region dogleg method 3-25
nonlinear least squares 3-22
fminsearch 8-70
fminunc 8-82
large-scale algorithm 4-12
large-scale example 2-47
lsqcurvefit 7-3 8-134
lsqnonlin 7-3 8-158
nonlinear programming 3-4
normal equations 4-12 4-14

0

objective function 2-3
return values 2-101
optimality conditions linear programming 4-16
optimget 8-175
optimization
functions by category 7-1
getting to a global minimum 2-98
handling infeasibility 2-99
helpful hints 2-98
introduction 3-4
objective function return values 2-101
troubleshooting 2-98
unconstrained 3-6
optimization parameters structure 2-78
optimget 7-3 8-175
optimset 7-3 8-176
Optimization Tool 5-1
functions that apply 7-3
opening 5-2
optimtool 7-3 8-181
options 5-29
pausing and stopping 5-27
problem 5-7
running a problem 5-27
solvers 5-5
steps 5-4
optimset 8-176
optimtool 5-1 8-181
options parameters
descriptions 6-8
possible values 8-177
utility functions 7-3
Out of memory. error 2-50
output arguments 6-2
output display 2-81
output function 2-88

P

PCG., see preconditioned conjugate gradients preconditioned conjugate gradients 4-7
algorithm 4-7
in large-scale linear programming 4-17
in trust-region methods 4-4
preconditioner 2-46
banded 2-55
in PCG method 4-7
predictor-corrector algorithm 4-17
preprocessing 4-18
linear programming 4-15
primal problem 4-16
primal-dual algorithm 4-16
primal-dual interior-point 4-15
projection method
quadprog medium-scale algorithm 8-192
sequential quadratic programming (SQP) 3-34

Q

quadprog 8-183
large-scale example 2-64
quadratic programming 3-4
fmincon 8-49
large-scale algorithm 4-13
large-scale example 2-64
quadprog 7-2 8-183
quasi-Newton method
implementation 3-11
quasi-Newton methods 3-8
fminunc medium-scale algorithm 8-83
unconstrained optimization 3-8

R

reflective line search 4-13
reflective steps 4-10
definition 4-11
residual 3-18
revised simplex algorithm 3-39
Rosenbrock
banana function 8-67
Rosenbrock's function 3-6

S

sampling interval 8-93
secular equation 4-4
semi-infinite constraints 7-2 8-85
Sherman-Morrison formula 4-17
signal processing example 2-36
simple bounds 2-13
simplex search 8-69
unconstrained optimization 3-6
Simulink Response Optimization, see Simulink Response Optimization
Simulink, multiobjective example 2-27
singleton rows 4-18
solving nonlinear systems of equations 3-25
sparsity pattern Jacobian 2-47
sparsity structure, Hessian 2-54
SQP method 3-30
fmincon 8-49
implementation 3-34
steepest descent 8-83
stopping criteria, large-scale linear programming 4-18
structural rank 4-18
subspace
determination of 4-4
subspace, two-dimensional 4-4
systems of nonlinear equations solving 8-101

T

trust region 4-3
trust-region dogleg method (medium-scale)
implementation for nonlinear equations 3-27
systems of nonlinear equations 3-25
two-dimensional subspace 4-4

U

unbounded solutions warning
linprog 8-132
quadprog 8-193
unconstrained minimization
fminsearch 8-64
fminunc 8-71
large-scale example 2-51
medium-scale example 2-10 one dimensional 7-2 8-27
unconstrained optimization 3-6
upper bounds 2-13

v

variable-step ODE solver 2-33

W

warning
equality constraints inconsistent, quadprog 8-192
infeasible solution, linprog 8-132
infeasible solution, quadprog 8-192
stuck at minimum, fsolve 8-113
unbounded solutions, linprog 8-132
unbounded solutions, quadprog 8-193
warnings displayed 2-100
weighted sum strategy 3-46

z

zero curvature direction 4-7
zero finding 8-101
zero of a function, finding 8-116

[^0]: References

 See Also @(function_handle), fminbnd, fminsearch, fminunc, optimset

